next up previous contents index
Next: Examples Up: Standard Symmetric Eigenvalue Problems Previous: Purpose   Contents   Index

Arguments

AB
(input/output) REAL or COMPLEX array, shape $(:,:)$ with $size$(AB,1) $= kd+1$ and $size$(AB,2) $= n$, where $kd$ is the number of subdiagonals or superdiagonals in the band and $n$ is the order of $A$.
On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') triangle of matrix $A$ in band storage. The $kd+1$ diagonals of $A$ are stored in the rows of AB so that the $j^{th}$ column of $A$ is stored in the $j^{th}$ column of ${\bf AB}$ as follows:

\begin{displaymath}
\begin{array}{c\vert c\vert c}
A_{i,j} & i,j & {\bf UPLO} ...
...1 \leq j \leq n \end{array} & \mbox{'L'} \\ \hline
\end{array}\end{displaymath}

On exit, ${\bf AB}$ is overwritten by values generated during the reduction of $A$ to a tridiagonal matrix $T$. If ${\bf UPLO} =$ 'U', the first superdiagonal and the diagonal of $T$ are returned in rows $kd$ and $kd+1$ of ${\bf AB}$. If ${\bf UPLO} =$ 'L', the diagonal and first subdiagonal of $T$ are returned in the first two rows of ${\bf AB}$.

W
(output) REAL array, shape $(:)$ with $size$(W) $= n$.
The eigenvalues in ascending order.

UPLO
Optional (input) CHARACTER(LEN=1).

\begin{optionarg}
\item[{$=$\ 'U':}] Upper triangle of $A$\ is stored;
\item[{$=$\ 'L':}] Lower triangle of $A$\ is stored.
\end{optionarg}
Default value: 'U'.

Z
Optional (output) REAL or COMPLEX square array, shape $(:,:)$ with $size$(Z,1) $= n$.
The columns of Z contain the orthonormal eigenvectors of $A$ in the order of the eigenvalues.

INFO
Optional (output) INTEGER.

\begin{infoarg}
\item[{$=$\ 0:}] successful exit.
\item[{$<$\ 0:}] if {\bf INFO}...
...nts of an intermediate tridiagonal
form did not converge to zero.
\end{infoarg}
If ${\bf INFO}$ is not present and an error occurs, then the program is terminated with an error message.
References: [1] and [17,9,20].
next up previous contents index
Next: Examples Up: Standard Symmetric Eigenvalue Problems Previous: Purpose   Contents   Index
Susan Blackford 2001-08-19