next up previous contents index
Next: Generalized Linear Least Squares Up: Linear Least Squares Problems Previous: Arguments   Contents   Index

Example (from Program LA_GELSS_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
Matrices $A$ and $B$ are the same as in the example for LA_GELSY. The call:
CALL LA_GELSS( A, B, RANK, S, RCOND=0.00001_wp, INFO=INFO ) 6.2

A, B, S, RANK, and INFO on exit:

\begin{displaymath}
\begin{array}{c} {\bf A} \\
\begin{array}{\vert llll\vert...
...\;\; 6.90588 \times 10^{-1} \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}\hspace{-1.00 cm}
\begin{array}{c} {\bf B} \\
\begin{array...
...\\ 7.52832 \times 10^{-15} \\
\hline
\end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{c}
{\bf RANK} = 2
\end{array}\hspace{1.00 cm}
\begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}

The singular values of $A$ are:

\begin{displaymath}\left( \begin{array}{llll}
13.7210 & 6.14279 & 2.64806 \times 10^{-7} & 7.52832 \times 10^{-15}
\end{array} \right) \end{displaymath}

The right singular vectors are (columnwise):


\begin{displaymath}
\left( \begin{array}{llll}
-1.14937 \times 10^{-1} & -7.55...
...0 \times 10^{-1} & -8.16497 \times 10^{-1}
\end{array} \right)
\end{displaymath}

The solution matrix is:


\begin{displaymath}X = \left( \begin{array}{lll}
\;\;\; 4.20045 \times 10^{-1} ...
...mes 10^{-1} & -5.91214 \times 10^{-3} \\
\end{array} \right). \end{displaymath}



Susan Blackford 2001-08-19