The singular value decomposition of an m-by-n matrix A is given by

where U and V are orthogonal (unitary)
and
is an m-by-n diagonal matrix with real
diagonal elements,
, such that

The
are the singular values of A and the
first min(m , n) columns of U and V
are the left and right singular vectors of A.
The singular values and singular vectors satisfy:

where
and
are the i-th columns of U and V respectively.
A single driver routine xGESVD computes all or part of the singular value decomposition of a general nonsymmetric matrix (see Table 2.5). A future version of LAPACK will include a driver based on divide and conquer, as in section 2.2.4.1.
--------------------------------------------------------------------------
Type of Single precision Double precision
problem Function and storage scheme real complex real complex
--------------------------------------------------------------------------
SEP simple driver SSYEV CHEEV DSYEV ZHEEV
expert driver SSYEVX CHEEVX DSYEVX ZHEEVX
--------------------------------------------------------------------------
simple driver (packed storage) SSPEV CHPEV DSPEV ZHPEV
expert driver (packed storage) SSPEVX CHPEVX DSPEVX ZHPEVX
--------------------------------------------------------------------------
simple driver (band matrix) SSBEV CHBEV DSBEV ZHBEV
expert driver (band matrix) SSBEVX CHBEVX DSBEVX ZHBEVX
--------------------------------------------------------------------------
simple driver (tridiagonal SSTEV DSTEV
matrix)
expert driver (tridiagonal SSTEVX DSTEVX
matrix)
--------------------------------------------------------------------------
NEP simple driver for SGEES CGEES DGEES ZGEES
Schur factorization
expert driver for SGEESX CGEESX DGEESX ZGEESX
Schur factorization
simple driver for SGEEV CGEEV DGEEV ZGEEV
eigenvalues/vectors
expert driver for SGEEVX CGEEVX DGEEVX ZGEEVX
eigenvalues/vectors
--------------------------------------------------------------------------
SVD singular values/vectors SGESVD CGESVD DGESVD ZGESVD
--------------------------------------------------------------------------