The singular value decomposition of an m-by-n matrix A is given by
where U and V are orthogonal (unitary) and is an m-by-n diagonal matrix with real diagonal elements, , such that
The are the singular values of A and the first min(m , n) columns of U and V are the left and right singular vectors of A.
The singular values and singular vectors satisfy:
where and are the i-th columns of U and V respectively.
A single driver routine xGESVD computes all or part of the singular value decomposition of a general nonsymmetric matrix (see Table 2.5). A future version of LAPACK will include a driver based on divide and conquer, as in section 2.2.4.1.
-------------------------------------------------------------------------- Type of Single precision Double precision problem Function and storage scheme real complex real complex -------------------------------------------------------------------------- SEP simple driver SSYEV CHEEV DSYEV ZHEEV expert driver SSYEVX CHEEVX DSYEVX ZHEEVX -------------------------------------------------------------------------- simple driver (packed storage) SSPEV CHPEV DSPEV ZHPEV expert driver (packed storage) SSPEVX CHPEVX DSPEVX ZHPEVX -------------------------------------------------------------------------- simple driver (band matrix) SSBEV CHBEV DSBEV ZHBEV expert driver (band matrix) SSBEVX CHBEVX DSBEVX ZHBEVX -------------------------------------------------------------------------- simple driver (tridiagonal SSTEV DSTEV matrix) expert driver (tridiagonal SSTEVX DSTEVX matrix) -------------------------------------------------------------------------- NEP simple driver for SGEES CGEES DGEES ZGEES Schur factorization expert driver for SGEESX CGEESX DGEESX ZGEESX Schur factorization simple driver for SGEEV CGEEV DGEEV ZGEEV eigenvalues/vectors expert driver for SGEEVX CGEEVX DGEEVX ZGEEVX eigenvalues/vectors -------------------------------------------------------------------------- SVD singular values/vectors SGESVD CGESVD DGESVD ZGESVD --------------------------------------------------------------------------