LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
slaqr2.f
Go to the documentation of this file.
1*> \brief \b SLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLAQR2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
22* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
23* LDT, NV, WV, LDWV, WORK, LWORK )
24*
25* .. Scalar Arguments ..
26* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
27* $ LDZ, LWORK, N, ND, NH, NS, NV, NW
28* LOGICAL WANTT, WANTZ
29* ..
30* .. Array Arguments ..
31* REAL H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
32* $ V( LDV, * ), WORK( * ), WV( LDWV, * ),
33* $ Z( LDZ, * )
34* ..
35*
36*
37*> \par Purpose:
38* =============
39*>
40*> \verbatim
41*>
42*> SLAQR2 is identical to SLAQR3 except that it avoids
43*> recursion by calling SLAHQR instead of SLAQR4.
44*>
45*> Aggressive early deflation:
46*>
47*> This subroutine accepts as input an upper Hessenberg matrix
48*> H and performs an orthogonal similarity transformation
49*> designed to detect and deflate fully converged eigenvalues from
50*> a trailing principal submatrix. On output H has been over-
51*> written by a new Hessenberg matrix that is a perturbation of
52*> an orthogonal similarity transformation of H. It is to be
53*> hoped that the final version of H has many zero subdiagonal
54*> entries.
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] WANTT
61*> \verbatim
62*> WANTT is LOGICAL
63*> If .TRUE., then the Hessenberg matrix H is fully updated
64*> so that the quasi-triangular Schur factor may be
65*> computed (in cooperation with the calling subroutine).
66*> If .FALSE., then only enough of H is updated to preserve
67*> the eigenvalues.
68*> \endverbatim
69*>
70*> \param[in] WANTZ
71*> \verbatim
72*> WANTZ is LOGICAL
73*> If .TRUE., then the orthogonal matrix Z is updated so
74*> so that the orthogonal Schur factor may be computed
75*> (in cooperation with the calling subroutine).
76*> If .FALSE., then Z is not referenced.
77*> \endverbatim
78*>
79*> \param[in] N
80*> \verbatim
81*> N is INTEGER
82*> The order of the matrix H and (if WANTZ is .TRUE.) the
83*> order of the orthogonal matrix Z.
84*> \endverbatim
85*>
86*> \param[in] KTOP
87*> \verbatim
88*> KTOP is INTEGER
89*> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
90*> KBOT and KTOP together determine an isolated block
91*> along the diagonal of the Hessenberg matrix.
92*> \endverbatim
93*>
94*> \param[in] KBOT
95*> \verbatim
96*> KBOT is INTEGER
97*> It is assumed without a check that either
98*> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
99*> determine an isolated block along the diagonal of the
100*> Hessenberg matrix.
101*> \endverbatim
102*>
103*> \param[in] NW
104*> \verbatim
105*> NW is INTEGER
106*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
107*> \endverbatim
108*>
109*> \param[in,out] H
110*> \verbatim
111*> H is REAL array, dimension (LDH,N)
112*> On input the initial N-by-N section of H stores the
113*> Hessenberg matrix undergoing aggressive early deflation.
114*> On output H has been transformed by an orthogonal
115*> similarity transformation, perturbed, and the returned
116*> to Hessenberg form that (it is to be hoped) has some
117*> zero subdiagonal entries.
118*> \endverbatim
119*>
120*> \param[in] LDH
121*> \verbatim
122*> LDH is INTEGER
123*> Leading dimension of H just as declared in the calling
124*> subroutine. N <= LDH
125*> \endverbatim
126*>
127*> \param[in] ILOZ
128*> \verbatim
129*> ILOZ is INTEGER
130*> \endverbatim
131*>
132*> \param[in] IHIZ
133*> \verbatim
134*> IHIZ is INTEGER
135*> Specify the rows of Z to which transformations must be
136*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
137*> \endverbatim
138*>
139*> \param[in,out] Z
140*> \verbatim
141*> Z is REAL array, dimension (LDZ,N)
142*> IF WANTZ is .TRUE., then on output, the orthogonal
143*> similarity transformation mentioned above has been
144*> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
145*> If WANTZ is .FALSE., then Z is unreferenced.
146*> \endverbatim
147*>
148*> \param[in] LDZ
149*> \verbatim
150*> LDZ is INTEGER
151*> The leading dimension of Z just as declared in the
152*> calling subroutine. 1 <= LDZ.
153*> \endverbatim
154*>
155*> \param[out] NS
156*> \verbatim
157*> NS is INTEGER
158*> The number of unconverged (ie approximate) eigenvalues
159*> returned in SR and SI that may be used as shifts by the
160*> calling subroutine.
161*> \endverbatim
162*>
163*> \param[out] ND
164*> \verbatim
165*> ND is INTEGER
166*> The number of converged eigenvalues uncovered by this
167*> subroutine.
168*> \endverbatim
169*>
170*> \param[out] SR
171*> \verbatim
172*> SR is REAL array, dimension (KBOT)
173*> \endverbatim
174*>
175*> \param[out] SI
176*> \verbatim
177*> SI is REAL array, dimension (KBOT)
178*> On output, the real and imaginary parts of approximate
179*> eigenvalues that may be used for shifts are stored in
180*> SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
181*> SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
182*> The real and imaginary parts of converged eigenvalues
183*> are stored in SR(KBOT-ND+1) through SR(KBOT) and
184*> SI(KBOT-ND+1) through SI(KBOT), respectively.
185*> \endverbatim
186*>
187*> \param[out] V
188*> \verbatim
189*> V is REAL array, dimension (LDV,NW)
190*> An NW-by-NW work array.
191*> \endverbatim
192*>
193*> \param[in] LDV
194*> \verbatim
195*> LDV is INTEGER
196*> The leading dimension of V just as declared in the
197*> calling subroutine. NW <= LDV
198*> \endverbatim
199*>
200*> \param[in] NH
201*> \verbatim
202*> NH is INTEGER
203*> The number of columns of T. NH >= NW.
204*> \endverbatim
205*>
206*> \param[out] T
207*> \verbatim
208*> T is REAL array, dimension (LDT,NW)
209*> \endverbatim
210*>
211*> \param[in] LDT
212*> \verbatim
213*> LDT is INTEGER
214*> The leading dimension of T just as declared in the
215*> calling subroutine. NW <= LDT
216*> \endverbatim
217*>
218*> \param[in] NV
219*> \verbatim
220*> NV is INTEGER
221*> The number of rows of work array WV available for
222*> workspace. NV >= NW.
223*> \endverbatim
224*>
225*> \param[out] WV
226*> \verbatim
227*> WV is REAL array, dimension (LDWV,NW)
228*> \endverbatim
229*>
230*> \param[in] LDWV
231*> \verbatim
232*> LDWV is INTEGER
233*> The leading dimension of W just as declared in the
234*> calling subroutine. NW <= LDV
235*> \endverbatim
236*>
237*> \param[out] WORK
238*> \verbatim
239*> WORK is REAL array, dimension (LWORK)
240*> On exit, WORK(1) is set to an estimate of the optimal value
241*> of LWORK for the given values of N, NW, KTOP and KBOT.
242*> \endverbatim
243*>
244*> \param[in] LWORK
245*> \verbatim
246*> LWORK is INTEGER
247*> The dimension of the work array WORK. LWORK = 2*NW
248*> suffices, but greater efficiency may result from larger
249*> values of LWORK.
250*>
251*> If LWORK = -1, then a workspace query is assumed; SLAQR2
252*> only estimates the optimal workspace size for the given
253*> values of N, NW, KTOP and KBOT. The estimate is returned
254*> in WORK(1). No error message related to LWORK is issued
255*> by XERBLA. Neither H nor Z are accessed.
256*> \endverbatim
257*
258* Authors:
259* ========
260*
261*> \author Univ. of Tennessee
262*> \author Univ. of California Berkeley
263*> \author Univ. of Colorado Denver
264*> \author NAG Ltd.
265*
266*> \ingroup realOTHERauxiliary
267*
268*> \par Contributors:
269* ==================
270*>
271*> Karen Braman and Ralph Byers, Department of Mathematics,
272*> University of Kansas, USA
273*>
274* =====================================================================
275 SUBROUTINE slaqr2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
276 $ IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
277 $ LDT, NV, WV, LDWV, WORK, LWORK )
278*
279* -- LAPACK auxiliary routine --
280* -- LAPACK is a software package provided by Univ. of Tennessee, --
281* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
282*
283* .. Scalar Arguments ..
284 INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
285 $ LDZ, LWORK, N, ND, NH, NS, NV, NW
286 LOGICAL WANTT, WANTZ
287* ..
288* .. Array Arguments ..
289 REAL H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
290 $ V( LDV, * ), WORK( * ), WV( LDWV, * ),
291 $ z( ldz, * )
292* ..
293*
294* ================================================================
295* .. Parameters ..
296 REAL ZERO, ONE
297 PARAMETER ( ZERO = 0.0e0, one = 1.0e0 )
298* ..
299* .. Local Scalars ..
300 REAL AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
301 $ SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
302 INTEGER I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
303 $ KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2,
304 $ lwkopt
305 LOGICAL BULGE, SORTED
306* ..
307* .. External Functions ..
308 REAL SLAMCH
309 EXTERNAL SLAMCH
310* ..
311* .. External Subroutines ..
312 EXTERNAL scopy, sgehrd, sgemm, slabad, slacpy, slahqr,
314* ..
315* .. Intrinsic Functions ..
316 INTRINSIC abs, int, max, min, real, sqrt
317* ..
318* .. Executable Statements ..
319*
320* ==== Estimate optimal workspace. ====
321*
322 jw = min( nw, kbot-ktop+1 )
323 IF( jw.LE.2 ) THEN
324 lwkopt = 1
325 ELSE
326*
327* ==== Workspace query call to SGEHRD ====
328*
329 CALL sgehrd( jw, 1, jw-1, t, ldt, work, work, -1, info )
330 lwk1 = int( work( 1 ) )
331*
332* ==== Workspace query call to SORMHR ====
333*
334 CALL sormhr( 'R', 'N', jw, jw, 1, jw-1, t, ldt, work, v, ldv,
335 $ work, -1, info )
336 lwk2 = int( work( 1 ) )
337*
338* ==== Optimal workspace ====
339*
340 lwkopt = jw + max( lwk1, lwk2 )
341 END IF
342*
343* ==== Quick return in case of workspace query. ====
344*
345 IF( lwork.EQ.-1 ) THEN
346 work( 1 ) = real( lwkopt )
347 RETURN
348 END IF
349*
350* ==== Nothing to do ...
351* ... for an empty active block ... ====
352 ns = 0
353 nd = 0
354 work( 1 ) = one
355 IF( ktop.GT.kbot )
356 $ RETURN
357* ... nor for an empty deflation window. ====
358 IF( nw.LT.1 )
359 $ RETURN
360*
361* ==== Machine constants ====
362*
363 safmin = slamch( 'SAFE MINIMUM' )
364 safmax = one / safmin
365 CALL slabad( safmin, safmax )
366 ulp = slamch( 'PRECISION' )
367 smlnum = safmin*( real( n ) / ulp )
368*
369* ==== Setup deflation window ====
370*
371 jw = min( nw, kbot-ktop+1 )
372 kwtop = kbot - jw + 1
373 IF( kwtop.EQ.ktop ) THEN
374 s = zero
375 ELSE
376 s = h( kwtop, kwtop-1 )
377 END IF
378*
379 IF( kbot.EQ.kwtop ) THEN
380*
381* ==== 1-by-1 deflation window: not much to do ====
382*
383 sr( kwtop ) = h( kwtop, kwtop )
384 si( kwtop ) = zero
385 ns = 1
386 nd = 0
387 IF( abs( s ).LE.max( smlnum, ulp*abs( h( kwtop, kwtop ) ) ) )
388 $ THEN
389 ns = 0
390 nd = 1
391 IF( kwtop.GT.ktop )
392 $ h( kwtop, kwtop-1 ) = zero
393 END IF
394 work( 1 ) = one
395 RETURN
396 END IF
397*
398* ==== Convert to spike-triangular form. (In case of a
399* . rare QR failure, this routine continues to do
400* . aggressive early deflation using that part of
401* . the deflation window that converged using INFQR
402* . here and there to keep track.) ====
403*
404 CALL slacpy( 'U', jw, jw, h( kwtop, kwtop ), ldh, t, ldt )
405 CALL scopy( jw-1, h( kwtop+1, kwtop ), ldh+1, t( 2, 1 ), ldt+1 )
406*
407 CALL slaset( 'A', jw, jw, zero, one, v, ldv )
408 CALL slahqr( .true., .true., jw, 1, jw, t, ldt, sr( kwtop ),
409 $ si( kwtop ), 1, jw, v, ldv, infqr )
410*
411* ==== STREXC needs a clean margin near the diagonal ====
412*
413 DO 10 j = 1, jw - 3
414 t( j+2, j ) = zero
415 t( j+3, j ) = zero
416 10 CONTINUE
417 IF( jw.GT.2 )
418 $ t( jw, jw-2 ) = zero
419*
420* ==== Deflation detection loop ====
421*
422 ns = jw
423 ilst = infqr + 1
424 20 CONTINUE
425 IF( ilst.LE.ns ) THEN
426 IF( ns.EQ.1 ) THEN
427 bulge = .false.
428 ELSE
429 bulge = t( ns, ns-1 ).NE.zero
430 END IF
431*
432* ==== Small spike tip test for deflation ====
433*
434 IF( .NOT.bulge ) THEN
435*
436* ==== Real eigenvalue ====
437*
438 foo = abs( t( ns, ns ) )
439 IF( foo.EQ.zero )
440 $ foo = abs( s )
441 IF( abs( s*v( 1, ns ) ).LE.max( smlnum, ulp*foo ) ) THEN
442*
443* ==== Deflatable ====
444*
445 ns = ns - 1
446 ELSE
447*
448* ==== Undeflatable. Move it up out of the way.
449* . (STREXC can not fail in this case.) ====
450*
451 ifst = ns
452 CALL strexc( 'V', jw, t, ldt, v, ldv, ifst, ilst, work,
453 $ info )
454 ilst = ilst + 1
455 END IF
456 ELSE
457*
458* ==== Complex conjugate pair ====
459*
460 foo = abs( t( ns, ns ) ) + sqrt( abs( t( ns, ns-1 ) ) )*
461 $ sqrt( abs( t( ns-1, ns ) ) )
462 IF( foo.EQ.zero )
463 $ foo = abs( s )
464 IF( max( abs( s*v( 1, ns ) ), abs( s*v( 1, ns-1 ) ) ).LE.
465 $ max( smlnum, ulp*foo ) ) THEN
466*
467* ==== Deflatable ====
468*
469 ns = ns - 2
470 ELSE
471*
472* ==== Undeflatable. Move them up out of the way.
473* . Fortunately, STREXC does the right thing with
474* . ILST in case of a rare exchange failure. ====
475*
476 ifst = ns
477 CALL strexc( 'V', jw, t, ldt, v, ldv, ifst, ilst, work,
478 $ info )
479 ilst = ilst + 2
480 END IF
481 END IF
482*
483* ==== End deflation detection loop ====
484*
485 GO TO 20
486 END IF
487*
488* ==== Return to Hessenberg form ====
489*
490 IF( ns.EQ.0 )
491 $ s = zero
492*
493 IF( ns.LT.jw ) THEN
494*
495* ==== sorting diagonal blocks of T improves accuracy for
496* . graded matrices. Bubble sort deals well with
497* . exchange failures. ====
498*
499 sorted = .false.
500 i = ns + 1
501 30 CONTINUE
502 IF( sorted )
503 $ GO TO 50
504 sorted = .true.
505*
506 kend = i - 1
507 i = infqr + 1
508 IF( i.EQ.ns ) THEN
509 k = i + 1
510 ELSE IF( t( i+1, i ).EQ.zero ) THEN
511 k = i + 1
512 ELSE
513 k = i + 2
514 END IF
515 40 CONTINUE
516 IF( k.LE.kend ) THEN
517 IF( k.EQ.i+1 ) THEN
518 evi = abs( t( i, i ) )
519 ELSE
520 evi = abs( t( i, i ) ) + sqrt( abs( t( i+1, i ) ) )*
521 $ sqrt( abs( t( i, i+1 ) ) )
522 END IF
523*
524 IF( k.EQ.kend ) THEN
525 evk = abs( t( k, k ) )
526 ELSE IF( t( k+1, k ).EQ.zero ) THEN
527 evk = abs( t( k, k ) )
528 ELSE
529 evk = abs( t( k, k ) ) + sqrt( abs( t( k+1, k ) ) )*
530 $ sqrt( abs( t( k, k+1 ) ) )
531 END IF
532*
533 IF( evi.GE.evk ) THEN
534 i = k
535 ELSE
536 sorted = .false.
537 ifst = i
538 ilst = k
539 CALL strexc( 'V', jw, t, ldt, v, ldv, ifst, ilst, work,
540 $ info )
541 IF( info.EQ.0 ) THEN
542 i = ilst
543 ELSE
544 i = k
545 END IF
546 END IF
547 IF( i.EQ.kend ) THEN
548 k = i + 1
549 ELSE IF( t( i+1, i ).EQ.zero ) THEN
550 k = i + 1
551 ELSE
552 k = i + 2
553 END IF
554 GO TO 40
555 END IF
556 GO TO 30
557 50 CONTINUE
558 END IF
559*
560* ==== Restore shift/eigenvalue array from T ====
561*
562 i = jw
563 60 CONTINUE
564 IF( i.GE.infqr+1 ) THEN
565 IF( i.EQ.infqr+1 ) THEN
566 sr( kwtop+i-1 ) = t( i, i )
567 si( kwtop+i-1 ) = zero
568 i = i - 1
569 ELSE IF( t( i, i-1 ).EQ.zero ) THEN
570 sr( kwtop+i-1 ) = t( i, i )
571 si( kwtop+i-1 ) = zero
572 i = i - 1
573 ELSE
574 aa = t( i-1, i-1 )
575 cc = t( i, i-1 )
576 bb = t( i-1, i )
577 dd = t( i, i )
578 CALL slanv2( aa, bb, cc, dd, sr( kwtop+i-2 ),
579 $ si( kwtop+i-2 ), sr( kwtop+i-1 ),
580 $ si( kwtop+i-1 ), cs, sn )
581 i = i - 2
582 END IF
583 GO TO 60
584 END IF
585*
586 IF( ns.LT.jw .OR. s.EQ.zero ) THEN
587 IF( ns.GT.1 .AND. s.NE.zero ) THEN
588*
589* ==== Reflect spike back into lower triangle ====
590*
591 CALL scopy( ns, v, ldv, work, 1 )
592 beta = work( 1 )
593 CALL slarfg( ns, beta, work( 2 ), 1, tau )
594 work( 1 ) = one
595*
596 CALL slaset( 'L', jw-2, jw-2, zero, zero, t( 3, 1 ), ldt )
597*
598 CALL slarf( 'L', ns, jw, work, 1, tau, t, ldt,
599 $ work( jw+1 ) )
600 CALL slarf( 'R', ns, ns, work, 1, tau, t, ldt,
601 $ work( jw+1 ) )
602 CALL slarf( 'R', jw, ns, work, 1, tau, v, ldv,
603 $ work( jw+1 ) )
604*
605 CALL sgehrd( jw, 1, ns, t, ldt, work, work( jw+1 ),
606 $ lwork-jw, info )
607 END IF
608*
609* ==== Copy updated reduced window into place ====
610*
611 IF( kwtop.GT.1 )
612 $ h( kwtop, kwtop-1 ) = s*v( 1, 1 )
613 CALL slacpy( 'U', jw, jw, t, ldt, h( kwtop, kwtop ), ldh )
614 CALL scopy( jw-1, t( 2, 1 ), ldt+1, h( kwtop+1, kwtop ),
615 $ ldh+1 )
616*
617* ==== Accumulate orthogonal matrix in order update
618* . H and Z, if requested. ====
619*
620 IF( ns.GT.1 .AND. s.NE.zero )
621 $ CALL sormhr( 'R', 'N', jw, ns, 1, ns, t, ldt, work, v, ldv,
622 $ work( jw+1 ), lwork-jw, info )
623*
624* ==== Update vertical slab in H ====
625*
626 IF( wantt ) THEN
627 ltop = 1
628 ELSE
629 ltop = ktop
630 END IF
631 DO 70 krow = ltop, kwtop - 1, nv
632 kln = min( nv, kwtop-krow )
633 CALL sgemm( 'N', 'N', kln, jw, jw, one, h( krow, kwtop ),
634 $ ldh, v, ldv, zero, wv, ldwv )
635 CALL slacpy( 'A', kln, jw, wv, ldwv, h( krow, kwtop ), ldh )
636 70 CONTINUE
637*
638* ==== Update horizontal slab in H ====
639*
640 IF( wantt ) THEN
641 DO 80 kcol = kbot + 1, n, nh
642 kln = min( nh, n-kcol+1 )
643 CALL sgemm( 'C', 'N', jw, kln, jw, one, v, ldv,
644 $ h( kwtop, kcol ), ldh, zero, t, ldt )
645 CALL slacpy( 'A', jw, kln, t, ldt, h( kwtop, kcol ),
646 $ ldh )
647 80 CONTINUE
648 END IF
649*
650* ==== Update vertical slab in Z ====
651*
652 IF( wantz ) THEN
653 DO 90 krow = iloz, ihiz, nv
654 kln = min( nv, ihiz-krow+1 )
655 CALL sgemm( 'N', 'N', kln, jw, jw, one, z( krow, kwtop ),
656 $ ldz, v, ldv, zero, wv, ldwv )
657 CALL slacpy( 'A', kln, jw, wv, ldwv, z( krow, kwtop ),
658 $ ldz )
659 90 CONTINUE
660 END IF
661 END IF
662*
663* ==== Return the number of deflations ... ====
664*
665 nd = jw - ns
666*
667* ==== ... and the number of shifts. (Subtracting
668* . INFQR from the spike length takes care
669* . of the case of a rare QR failure while
670* . calculating eigenvalues of the deflation
671* . window.) ====
672*
673 ns = ns - infqr
674*
675* ==== Return optimal workspace. ====
676*
677 work( 1 ) = real( lwkopt )
678*
679* ==== End of SLAQR2 ====
680*
681 END
subroutine slabad(SMALL, LARGE)
SLABAD
Definition: slabad.f:74
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: slaset.f:110
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
subroutine sgehrd(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
SGEHRD
Definition: sgehrd.f:167
subroutine slarfg(N, ALPHA, X, INCX, TAU)
SLARFG generates an elementary reflector (Householder matrix).
Definition: slarfg.f:106
subroutine slanv2(A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN)
SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
Definition: slanv2.f:127
subroutine slarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
SLARF applies an elementary reflector to a general rectangular matrix.
Definition: slarf.f:124
subroutine slaqr2(WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, LDT, NV, WV, LDWV, WORK, LWORK)
SLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate...
Definition: slaqr2.f:278
subroutine slahqr(WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, INFO)
SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition: slahqr.f:207
subroutine sormhr(SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
SORMHR
Definition: sormhr.f:179
subroutine strexc(COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO)
STREXC
Definition: strexc.f:148
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:82
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:187