LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgehrd()

subroutine sgehrd ( integer n,
integer ilo,
integer ihi,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( * ) work,
integer lwork,
integer info )

SGEHRD

Download SGEHRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SGEHRD reduces a real general matrix A to upper Hessenberg form H by
!> an orthogonal similarity transformation:  Q**T * A * Q = H .
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]ILO
!>          ILO is INTEGER
!> 
[in]IHI
!>          IHI is INTEGER
!>
!>          It is assumed that A is already upper triangular in rows
!>          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
!>          set by a previous call to SGEBAL; otherwise they should be
!>          set to 1 and N respectively. See Further Details.
!>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the N-by-N general matrix to be reduced.
!>          On exit, the upper triangle and the first subdiagonal of A
!>          are overwritten with the upper Hessenberg matrix H, and the
!>          elements below the first subdiagonal, with the array TAU,
!>          represent the orthogonal matrix Q as a product of elementary
!>          reflectors. See Further Details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]TAU
!>          TAU is REAL array, dimension (N-1)
!>          The scalar factors of the elementary reflectors (see Further
!>          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
!>          zero.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= max(1,N).
!>          For good performance, LWORK should generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of (ihi-ilo) elementary
!>  reflectors
!>
!>     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
!>  exit in A(i+2:ihi,i), and tau in TAU(i).
!>
!>  The contents of A are illustrated by the following example, with
!>  n = 7, ilo = 2 and ihi = 6:
!>
!>  on entry,                        on exit,
!>
!>  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
!>  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
!>  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
!>  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
!>  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
!>  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
!>  (                         a )    (                          a )
!>
!>  where a denotes an element of the original matrix A, h denotes a
!>  modified element of the upper Hessenberg matrix H, and vi denotes an
!>  element of the vector defining H(i).
!>
!>  This file is a slight modification of LAPACK-3.0's SGEHRD
!>  subroutine incorporating improvements proposed by Quintana-Orti and
!>  Van de Geijn (2006). (See SLAHR2.)
!> 

Definition at line 164 of file sgehrd.f.

166*
167* -- LAPACK computational routine --
168* -- LAPACK is a software package provided by Univ. of Tennessee, --
169* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170*
171* .. Scalar Arguments ..
172 INTEGER IHI, ILO, INFO, LDA, LWORK, N
173* ..
174* .. Array Arguments ..
175 REAL A( LDA, * ), TAU( * ), WORK( * )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 INTEGER NBMAX, LDT, TSIZE
182 parameter( nbmax = 64, ldt = nbmax+1,
183 $ tsize = ldt*nbmax )
184 REAL ZERO, ONE
185 parameter( zero = 0.0e+0,
186 $ one = 1.0e+0 )
187* ..
188* .. Local Scalars ..
189 LOGICAL LQUERY
190 INTEGER I, IB, IINFO, IWT, J, LDWORK, LWKOPT, NB,
191 $ NBMIN, NH, NX
192 REAL EI
193* ..
194* .. External Subroutines ..
195 EXTERNAL saxpy, sgehd2, sgemm, slahr2, slarfb,
196 $ strmm,
197 $ xerbla
198* ..
199* .. Intrinsic Functions ..
200 INTRINSIC max, min
201* ..
202* .. External Functions ..
203 INTEGER ILAENV
204 REAL SROUNDUP_LWORK
205 EXTERNAL ilaenv, sroundup_lwork
206* ..
207* .. Executable Statements ..
208*
209* Test the input parameters
210*
211 info = 0
212 lquery = ( lwork.EQ.-1 )
213 IF( n.LT.0 ) THEN
214 info = -1
215 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
216 info = -2
217 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
218 info = -3
219 ELSE IF( lda.LT.max( 1, n ) ) THEN
220 info = -5
221 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
222 info = -8
223 END IF
224*
225 nh = ihi - ilo + 1
226 IF( info.EQ.0 ) THEN
227*
228* Compute the workspace requirements
229*
230 IF( nh.LE.1 ) THEN
231 lwkopt = 1
232 ELSE
233 nb = min( nbmax, ilaenv( 1, 'SGEHRD', ' ', n, ilo, ihi,
234 $ -1 ) )
235 lwkopt = n*nb + tsize
236 ENDIF
237 work( 1 ) = sroundup_lwork( lwkopt )
238 END IF
239*
240 IF( info.NE.0 ) THEN
241 CALL xerbla( 'SGEHRD', -info )
242 RETURN
243 ELSE IF( lquery ) THEN
244 RETURN
245 END IF
246*
247* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
248*
249 DO 10 i = 1, ilo - 1
250 tau( i ) = zero
251 10 CONTINUE
252 DO 20 i = max( 1, ihi ), n - 1
253 tau( i ) = zero
254 20 CONTINUE
255*
256* Quick return if possible
257*
258 IF( nh.LE.1 ) THEN
259 work( 1 ) = 1
260 RETURN
261 END IF
262*
263* Determine the block size
264*
265 nb = min( nbmax, ilaenv( 1, 'SGEHRD', ' ', n, ilo, ihi, -1 ) )
266 nbmin = 2
267 IF( nb.GT.1 .AND. nb.LT.nh ) THEN
268*
269* Determine when to cross over from blocked to unblocked code
270* (last block is always handled by unblocked code)
271*
272 nx = max( nb, ilaenv( 3, 'SGEHRD', ' ', n, ilo, ihi, -1 ) )
273 IF( nx.LT.nh ) THEN
274*
275* Determine if workspace is large enough for blocked code
276*
277 IF( lwork.LT.lwkopt ) THEN
278*
279* Not enough workspace to use optimal NB: determine the
280* minimum value of NB, and reduce NB or force use of
281* unblocked code
282*
283 nbmin = max( 2, ilaenv( 2, 'SGEHRD', ' ', n, ilo, ihi,
284 $ -1 ) )
285 IF( lwork.GE.(n*nbmin + tsize) ) THEN
286 nb = (lwork-tsize) / n
287 ELSE
288 nb = 1
289 END IF
290 END IF
291 END IF
292 END IF
293 ldwork = n
294*
295 IF( nb.LT.nbmin .OR. nb.GE.nh ) THEN
296*
297* Use unblocked code below
298*
299 i = ilo
300*
301 ELSE
302*
303* Use blocked code
304*
305 iwt = 1 + n*nb
306 DO 40 i = ilo, ihi - 1 - nx, nb
307 ib = min( nb, ihi-i )
308*
309* Reduce columns i:i+ib-1 to Hessenberg form, returning the
310* matrices V and T of the block reflector H = I - V*T*V**T
311* which performs the reduction, and also the matrix Y = A*V*T
312*
313 CALL slahr2( ihi, i, ib, a( 1, i ), lda, tau( i ),
314 $ work( iwt ), ldt, work, ldwork )
315*
316* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
317* right, computing A := A - Y * V**T. V(i+ib,ib-1) must be set
318* to 1
319*
320 ei = a( i+ib, i+ib-1 )
321 a( i+ib, i+ib-1 ) = one
322 CALL sgemm( 'No transpose', 'Transpose',
323 $ ihi, ihi-i-ib+1,
324 $ ib, -one, work, ldwork, a( i+ib, i ), lda, one,
325 $ a( 1, i+ib ), lda )
326 a( i+ib, i+ib-1 ) = ei
327*
328* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
329* right
330*
331 CALL strmm( 'Right', 'Lower', 'Transpose',
332 $ 'Unit', i, ib-1,
333 $ one, a( i+1, i ), lda, work, ldwork )
334 DO 30 j = 0, ib-2
335 CALL saxpy( i, -one, work( ldwork*j+1 ), 1,
336 $ a( 1, i+j+1 ), 1 )
337 30 CONTINUE
338*
339* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
340* left
341*
342 CALL slarfb( 'Left', 'Transpose', 'Forward',
343 $ 'Columnwise',
344 $ ihi-i, n-i-ib+1, ib, a( i+1, i ), lda,
345 $ work( iwt ), ldt, a( i+1, i+ib ), lda,
346 $ work, ldwork )
347 40 CONTINUE
348 END IF
349*
350* Use unblocked code to reduce the rest of the matrix
351*
352 CALL sgehd2( n, i, ihi, a, lda, tau, work, iinfo )
353*
354 work( 1 ) = sroundup_lwork( lwkopt )
355*
356 RETURN
357*
358* End of SGEHRD
359*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine sgehd2(n, ilo, ihi, a, lda, tau, work, info)
SGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
Definition sgehd2.f:147
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
SLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elemen...
Definition slahr2.f:179
subroutine slarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition slarfb.f:195
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRMM
Definition strmm.f:177
Here is the call graph for this function:
Here is the caller graph for this function: