LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ slahr2()

subroutine slahr2 ( integer n,
integer k,
integer nb,
real, dimension( lda, * ) a,
integer lda,
real, dimension( nb ) tau,
real, dimension( ldt, nb ) t,
integer ldt,
real, dimension( ldy, nb ) y,
integer ldy )

SLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.

Download SLAHR2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
!> matrix A so that elements below the k-th subdiagonal are zero. The
!> reduction is performed by an orthogonal similarity transformation
!> Q**T * A * Q. The routine returns the matrices V and T which determine
!> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
!>
!> This is an auxiliary routine called by SGEHRD.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.
!> 
[in]K
!>          K is INTEGER
!>          The offset for the reduction. Elements below the k-th
!>          subdiagonal in the first NB columns are reduced to zero.
!>          K < N.
!> 
[in]NB
!>          NB is INTEGER
!>          The number of columns to be reduced.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N-K+1)
!>          On entry, the n-by-(n-k+1) general matrix A.
!>          On exit, the elements on and above the k-th subdiagonal in
!>          the first NB columns are overwritten with the corresponding
!>          elements of the reduced matrix; the elements below the k-th
!>          subdiagonal, with the array TAU, represent the matrix Q as a
!>          product of elementary reflectors. The other columns of A are
!>          unchanged. See Further Details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]TAU
!>          TAU is REAL array, dimension (NB)
!>          The scalar factors of the elementary reflectors. See Further
!>          Details.
!> 
[out]T
!>          T is REAL array, dimension (LDT,NB)
!>          The upper triangular matrix T.
!> 
[in]LDT
!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= NB.
!> 
[out]Y
!>          Y is REAL array, dimension (LDY,NB)
!>          The n-by-nb matrix Y.
!> 
[in]LDY
!>          LDY is INTEGER
!>          The leading dimension of the array Y. LDY >= N.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of nb elementary reflectors
!>
!>     Q = H(1) H(2) . . . H(nb).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
!>  A(i+k+1:n,i), and tau in TAU(i).
!>
!>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
!>  V which is needed, with T and Y, to apply the transformation to the
!>  unreduced part of the matrix, using an update of the form:
!>  A := (I - V*T*V**T) * (A - Y*V**T).
!>
!>  The contents of A on exit are illustrated by the following example
!>  with n = 7, k = 3 and nb = 2:
!>
!>     ( a   a   a   a   a )
!>     ( a   a   a   a   a )
!>     ( a   a   a   a   a )
!>     ( h   h   a   a   a )
!>     ( v1  h   a   a   a )
!>     ( v1  v2  a   a   a )
!>     ( v1  v2  a   a   a )
!>
!>  where a denotes an element of the original matrix A, h denotes a
!>  modified element of the upper Hessenberg matrix H, and vi denotes an
!>  element of the vector defining H(i).
!>
!>  This subroutine is a slight modification of LAPACK-3.0's SLAHRD
!>  incorporating improvements proposed by Quintana-Orti and Van de
!>  Gejin. Note that the entries of A(1:K,2:NB) differ from those
!>  returned by the original LAPACK-3.0's SLAHRD routine. (This
!>  subroutine is not backward compatible with LAPACK-3.0's SLAHRD.)
!> 
References:
Gregorio Quintana-Orti and Robert van de Geijn, "Improving the performance of reduction to Hessenberg form," ACM Transactions on Mathematical Software, 32(2):180-194, June 2006.

Definition at line 178 of file slahr2.f.

179*
180* -- LAPACK auxiliary routine --
181* -- LAPACK is a software package provided by Univ. of Tennessee, --
182* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
183*
184* .. Scalar Arguments ..
185 INTEGER K, LDA, LDT, LDY, N, NB
186* ..
187* .. Array Arguments ..
188 REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
189 $ Y( LDY, NB )
190* ..
191*
192* =====================================================================
193*
194* .. Parameters ..
195 REAL ZERO, ONE
196 parameter( zero = 0.0e+0,
197 $ one = 1.0e+0 )
198* ..
199* .. Local Scalars ..
200 INTEGER I
201 REAL EI
202* ..
203* .. External Subroutines ..
204 EXTERNAL saxpy, scopy, sgemm, sgemv, slacpy,
206* ..
207* .. Intrinsic Functions ..
208 INTRINSIC min
209* ..
210* .. Executable Statements ..
211*
212* Quick return if possible
213*
214 IF( n.LE.1 )
215 $ RETURN
216*
217 DO 10 i = 1, nb
218 IF( i.GT.1 ) THEN
219*
220* Update A(K+1:N,I)
221*
222* Update I-th column of A - Y * V**T
223*
224 CALL sgemv( 'NO TRANSPOSE', n-k, i-1, -one, y(k+1,1),
225 $ ldy,
226 $ a( k+i-1, 1 ), lda, one, a( k+1, i ), 1 )
227*
228* Apply I - V * T**T * V**T to this column (call it b) from the
229* left, using the last column of T as workspace
230*
231* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
232* ( V2 ) ( b2 )
233*
234* where V1 is unit lower triangular
235*
236* w := V1**T * b1
237*
238 CALL scopy( i-1, a( k+1, i ), 1, t( 1, nb ), 1 )
239 CALL strmv( 'Lower', 'Transpose', 'UNIT',
240 $ i-1, a( k+1, 1 ),
241 $ lda, t( 1, nb ), 1 )
242*
243* w := w + V2**T * b2
244*
245 CALL sgemv( 'Transpose', n-k-i+1, i-1,
246 $ one, a( k+i, 1 ),
247 $ lda, a( k+i, i ), 1, one, t( 1, nb ), 1 )
248*
249* w := T**T * w
250*
251 CALL strmv( 'Upper', 'Transpose', 'NON-UNIT',
252 $ i-1, t, ldt,
253 $ t( 1, nb ), 1 )
254*
255* b2 := b2 - V2*w
256*
257 CALL sgemv( 'NO TRANSPOSE', n-k-i+1, i-1, -one,
258 $ a( k+i, 1 ),
259 $ lda, t( 1, nb ), 1, one, a( k+i, i ), 1 )
260*
261* b1 := b1 - V1*w
262*
263 CALL strmv( 'Lower', 'NO TRANSPOSE',
264 $ 'UNIT', i-1,
265 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
266 CALL saxpy( i-1, -one, t( 1, nb ), 1, a( k+1, i ), 1 )
267*
268 a( k+i-1, i-1 ) = ei
269 END IF
270*
271* Generate the elementary reflector H(I) to annihilate
272* A(K+I+1:N,I)
273*
274 CALL slarfg( n-k-i+1, a( k+i, i ), a( min( k+i+1, n ), i ),
275 $ 1,
276 $ tau( i ) )
277 ei = a( k+i, i )
278 a( k+i, i ) = one
279*
280* Compute Y(K+1:N,I)
281*
282 CALL sgemv( 'NO TRANSPOSE', n-k, n-k-i+1,
283 $ one, a( k+1, i+1 ),
284 $ lda, a( k+i, i ), 1, zero, y( k+1, i ), 1 )
285 CALL sgemv( 'Transpose', n-k-i+1, i-1,
286 $ one, a( k+i, 1 ), lda,
287 $ a( k+i, i ), 1, zero, t( 1, i ), 1 )
288 CALL sgemv( 'NO TRANSPOSE', n-k, i-1, -one,
289 $ y( k+1, 1 ), ldy,
290 $ t( 1, i ), 1, one, y( k+1, i ), 1 )
291 CALL sscal( n-k, tau( i ), y( k+1, i ), 1 )
292*
293* Compute T(1:I,I)
294*
295 CALL sscal( i-1, -tau( i ), t( 1, i ), 1 )
296 CALL strmv( 'Upper', 'No Transpose', 'NON-UNIT',
297 $ i-1, t, ldt,
298 $ t( 1, i ), 1 )
299 t( i, i ) = tau( i )
300*
301 10 CONTINUE
302 a( k+nb, nb ) = ei
303*
304* Compute Y(1:K,1:NB)
305*
306 CALL slacpy( 'ALL', k, nb, a( 1, 2 ), lda, y, ldy )
307 CALL strmm( 'RIGHT', 'Lower', 'NO TRANSPOSE',
308 $ 'UNIT', k, nb,
309 $ one, a( k+1, 1 ), lda, y, ldy )
310 IF( n.GT.k+nb )
311 $ CALL sgemm( 'NO TRANSPOSE', 'NO TRANSPOSE', k,
312 $ nb, n-k-nb, one,
313 $ a( 1, 2+nb ), lda, a( k+1+nb, 1 ), lda, one, y,
314 $ ldy )
315 CALL strmm( 'RIGHT', 'Upper', 'NO TRANSPOSE',
316 $ 'NON-UNIT', k, nb,
317 $ one, t, ldt, y, ldy )
318*
319 RETURN
320*
321* End of SLAHR2
322*
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SGEMV
Definition sgemv.f:158
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
Definition slarfg.f:104
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRMM
Definition strmm.f:177
subroutine strmv(uplo, trans, diag, n, a, lda, x, incx)
STRMV
Definition strmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: