LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zpbt01()

subroutine zpbt01 ( character  uplo,
integer  n,
integer  kd,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( ldafac, * )  afac,
integer  ldafac,
double precision, dimension( * )  rwork,
double precision  resid 
)

ZPBT01

Purpose:
 ZPBT01 reconstructs a Hermitian positive definite band matrix A from
 its L*L' or U'*U factorization and computes the residual
    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon, L' is the conjugate transpose of
 L, and U' is the conjugate transpose of U.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian band matrix A.  If UPLO = 'U', the
          upper triangular part of A is stored as a band matrix; if
          UPLO = 'L', the lower triangular part of A is stored.  The
          columns of the appropriate triangle are stored in the columns
          of A and the diagonals of the triangle are stored in the rows
          of A.  See ZPBTRF for further details.
[in]LDA
          LDA is INTEGER.
          The leading dimension of the array A.  LDA >= max(1,KD+1).
[in]AFAC
          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
          The factored form of the matrix A.  AFAC contains the factor
          L or U from the L*L' or U'*U factorization in band storage
          format, as computed by ZPBTRF.
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.
          LDAFAC >= max(1,KD+1).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 118 of file zpbt01.f.

120*
121* -- LAPACK test routine --
122* -- LAPACK is a software package provided by Univ. of Tennessee, --
123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
124*
125* .. Scalar Arguments ..
126 CHARACTER UPLO
127 INTEGER KD, LDA, LDAFAC, N
128 DOUBLE PRECISION RESID
129* ..
130* .. Array Arguments ..
131 DOUBLE PRECISION RWORK( * )
132 COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * )
133* ..
134*
135* =====================================================================
136*
137*
138* .. Parameters ..
139 DOUBLE PRECISION ZERO, ONE
140 parameter( zero = 0.0d+0, one = 1.0d+0 )
141* ..
142* .. Local Scalars ..
143 INTEGER I, J, K, KC, KLEN, ML, MU
144 DOUBLE PRECISION AKK, ANORM, EPS
145* ..
146* .. External Functions ..
147 LOGICAL LSAME
148 DOUBLE PRECISION DLAMCH, ZLANHB
149 COMPLEX*16 ZDOTC
150 EXTERNAL lsame, dlamch, zlanhb, zdotc
151* ..
152* .. External Subroutines ..
153 EXTERNAL zdscal, zher, ztrmv
154* ..
155* .. Intrinsic Functions ..
156 INTRINSIC dble, dimag, max, min
157* ..
158* .. Executable Statements ..
159*
160* Quick exit if N = 0.
161*
162 IF( n.LE.0 ) THEN
163 resid = zero
164 RETURN
165 END IF
166*
167* Exit with RESID = 1/EPS if ANORM = 0.
168*
169 eps = dlamch( 'Epsilon' )
170 anorm = zlanhb( '1', uplo, n, kd, a, lda, rwork )
171 IF( anorm.LE.zero ) THEN
172 resid = one / eps
173 RETURN
174 END IF
175*
176* Check the imaginary parts of the diagonal elements and return with
177* an error code if any are nonzero.
178*
179 IF( lsame( uplo, 'U' ) ) THEN
180 DO 10 j = 1, n
181 IF( dimag( afac( kd+1, j ) ).NE.zero ) THEN
182 resid = one / eps
183 RETURN
184 END IF
185 10 CONTINUE
186 ELSE
187 DO 20 j = 1, n
188 IF( dimag( afac( 1, j ) ).NE.zero ) THEN
189 resid = one / eps
190 RETURN
191 END IF
192 20 CONTINUE
193 END IF
194*
195* Compute the product U'*U, overwriting U.
196*
197 IF( lsame( uplo, 'U' ) ) THEN
198 DO 30 k = n, 1, -1
199 kc = max( 1, kd+2-k )
200 klen = kd + 1 - kc
201*
202* Compute the (K,K) element of the result.
203*
204 akk = dble(
205 $ zdotc( klen+1, afac( kc, k ), 1, afac( kc, k ), 1 ) )
206 afac( kd+1, k ) = akk
207*
208* Compute the rest of column K.
209*
210 IF( klen.GT.0 )
211 $ CALL ztrmv( 'Upper', 'Conjugate', 'Non-unit', klen,
212 $ afac( kd+1, k-klen ), ldafac-1,
213 $ afac( kc, k ), 1 )
214*
215 30 CONTINUE
216*
217* UPLO = 'L': Compute the product L*L', overwriting L.
218*
219 ELSE
220 DO 40 k = n, 1, -1
221 klen = min( kd, n-k )
222*
223* Add a multiple of column K of the factor L to each of
224* columns K+1 through N.
225*
226 IF( klen.GT.0 )
227 $ CALL zher( 'Lower', klen, one, afac( 2, k ), 1,
228 $ afac( 1, k+1 ), ldafac-1 )
229*
230* Scale column K by the diagonal element.
231*
232 akk = dble( afac( 1, k ) )
233 CALL zdscal( klen+1, akk, afac( 1, k ), 1 )
234*
235 40 CONTINUE
236 END IF
237*
238* Compute the difference L*L' - A or U'*U - A.
239*
240 IF( lsame( uplo, 'U' ) ) THEN
241 DO 60 j = 1, n
242 mu = max( 1, kd+2-j )
243 DO 50 i = mu, kd + 1
244 afac( i, j ) = afac( i, j ) - a( i, j )
245 50 CONTINUE
246 60 CONTINUE
247 ELSE
248 DO 80 j = 1, n
249 ml = min( kd+1, n-j+1 )
250 DO 70 i = 1, ml
251 afac( i, j ) = afac( i, j ) - a( i, j )
252 70 CONTINUE
253 80 CONTINUE
254 END IF
255*
256* Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
257*
258 resid = zlanhb( '1', uplo, n, kd, afac, ldafac, rwork )
259*
260 resid = ( ( resid / dble( n ) ) / anorm ) / eps
261*
262 RETURN
263*
264* End of ZPBT01
265*
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zher(uplo, n, alpha, x, incx, a, lda)
ZHER
Definition zher.f:135
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlanhb(norm, uplo, n, k, ab, ldab, work)
ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlanhb.f:132
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
subroutine ztrmv(uplo, trans, diag, n, a, lda, x, incx)
ZTRMV
Definition ztrmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: