LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zlanhb()

double precision function zlanhb ( character norm,
character uplo,
integer n,
integer k,
complex*16, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( * ) work )

ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.

Download ZLANHB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZLANHB returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of an !> n by n hermitian band matrix A, with k super-diagonals. !>
Returns
ZLANHB
!> !> ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
[in]NORM
!> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANHB as described !> above. !>
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> band matrix A is supplied. !> = 'U': Upper triangular !> = 'L': Lower triangular !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, ZLANHB is !> set to zero. !>
[in]K
!> K is INTEGER !> The number of super-diagonals or sub-diagonals of the !> band matrix A. K >= 0. !>
[in]AB
!> AB is COMPLEX*16 array, dimension (LDAB,N) !> The upper or lower triangle of the hermitian band matrix A, !> stored in the first K+1 rows of AB. The j-th column of A is !> stored in the j-th column of the array AB as follows: !> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). !> Note that the imaginary parts of the diagonal elements need !> not be set and are assumed to be zero. !>
[in]LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= K+1. !>
[out]WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 128 of file zlanhb.f.

130*
131* -- LAPACK auxiliary routine --
132* -- LAPACK is a software package provided by Univ. of Tennessee, --
133* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
134*
135* .. Scalar Arguments ..
136 CHARACTER NORM, UPLO
137 INTEGER K, LDAB, N
138* ..
139* .. Array Arguments ..
140 DOUBLE PRECISION WORK( * )
141 COMPLEX*16 AB( LDAB, * )
142* ..
143*
144* =====================================================================
145*
146* .. Parameters ..
147 DOUBLE PRECISION ONE, ZERO
148 parameter( one = 1.0d+0, zero = 0.0d+0 )
149* ..
150* .. Local Scalars ..
151 INTEGER I, J, L
152 DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
153* ..
154* .. External Functions ..
155 LOGICAL LSAME, DISNAN
156 EXTERNAL lsame, disnan
157* ..
158* .. External Subroutines ..
159 EXTERNAL zlassq
160* ..
161* .. Intrinsic Functions ..
162 INTRINSIC abs, dble, max, min, sqrt
163* ..
164* .. Executable Statements ..
165*
166 IF( n.EQ.0 ) THEN
167 VALUE = zero
168 ELSE IF( lsame( norm, 'M' ) ) THEN
169*
170* Find max(abs(A(i,j))).
171*
172 VALUE = zero
173 IF( lsame( uplo, 'U' ) ) THEN
174 DO 20 j = 1, n
175 DO 10 i = max( k+2-j, 1 ), k
176 sum = abs( ab( i, j ) )
177 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
178 10 CONTINUE
179 sum = abs( dble( ab( k+1, j ) ) )
180 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
181 20 CONTINUE
182 ELSE
183 DO 40 j = 1, n
184 sum = abs( dble( ab( 1, j ) ) )
185 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
186 DO 30 i = 2, min( n+1-j, k+1 )
187 sum = abs( ab( i, j ) )
188 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
189 30 CONTINUE
190 40 CONTINUE
191 END IF
192 ELSE IF( ( lsame( norm, 'I' ) ) .OR.
193 $ ( lsame( norm, 'O' ) ) .OR.
194 $ ( norm.EQ.'1' ) ) THEN
195*
196* Find normI(A) ( = norm1(A), since A is hermitian).
197*
198 VALUE = zero
199 IF( lsame( uplo, 'U' ) ) THEN
200 DO 60 j = 1, n
201 sum = zero
202 l = k + 1 - j
203 DO 50 i = max( 1, j-k ), j - 1
204 absa = abs( ab( l+i, j ) )
205 sum = sum + absa
206 work( i ) = work( i ) + absa
207 50 CONTINUE
208 work( j ) = sum + abs( dble( ab( k+1, j ) ) )
209 60 CONTINUE
210 DO 70 i = 1, n
211 sum = work( i )
212 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
213 70 CONTINUE
214 ELSE
215 DO 80 i = 1, n
216 work( i ) = zero
217 80 CONTINUE
218 DO 100 j = 1, n
219 sum = work( j ) + abs( dble( ab( 1, j ) ) )
220 l = 1 - j
221 DO 90 i = j + 1, min( n, j+k )
222 absa = abs( ab( l+i, j ) )
223 sum = sum + absa
224 work( i ) = work( i ) + absa
225 90 CONTINUE
226 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
227 100 CONTINUE
228 END IF
229 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
230 $ ( lsame( norm, 'E' ) ) ) THEN
231*
232* Find normF(A).
233*
234 scale = zero
235 sum = one
236 IF( k.GT.0 ) THEN
237 IF( lsame( uplo, 'U' ) ) THEN
238 DO 110 j = 2, n
239 CALL zlassq( min( j-1, k ), ab( max( k+2-j, 1 ),
240 $ j ),
241 $ 1, scale, sum )
242 110 CONTINUE
243 l = k + 1
244 ELSE
245 DO 120 j = 1, n - 1
246 CALL zlassq( min( n-j, k ), ab( 2, j ), 1, scale,
247 $ sum )
248 120 CONTINUE
249 l = 1
250 END IF
251 sum = 2*sum
252 ELSE
253 l = 1
254 END IF
255 DO 130 j = 1, n
256 IF( dble( ab( l, j ) ).NE.zero ) THEN
257 absa = abs( dble( ab( l, j ) ) )
258 IF( scale.LT.absa ) THEN
259 sum = one + sum*( scale / absa )**2
260 scale = absa
261 ELSE
262 sum = sum + ( absa / scale )**2
263 END IF
264 END IF
265 130 CONTINUE
266 VALUE = scale*sqrt( sum )
267 END IF
268*
269 zlanhb = VALUE
270 RETURN
271*
272* End of ZLANHB
273*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlanhb(norm, uplo, n, k, ab, ldab, work)
ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlanhb.f:130
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: