LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgebd2.f
Go to the documentation of this file.
1*> \brief \b DGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DGEBD2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebd2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebd2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebd2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, M, N
23* ..
24* .. Array Arguments ..
25* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ),
26* $ TAUQ( * ), WORK( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> DGEBD2 reduces a real general m by n matrix A to upper or lower
36*> bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
37*>
38*> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
39*> \endverbatim
40*
41* Arguments:
42* ==========
43*
44*> \param[in] M
45*> \verbatim
46*> M is INTEGER
47*> The number of rows in the matrix A. M >= 0.
48*> \endverbatim
49*>
50*> \param[in] N
51*> \verbatim
52*> N is INTEGER
53*> The number of columns in the matrix A. N >= 0.
54*> \endverbatim
55*>
56*> \param[in,out] A
57*> \verbatim
58*> A is DOUBLE PRECISION array, dimension (LDA,N)
59*> On entry, the m by n general matrix to be reduced.
60*> On exit,
61*> if m >= n, the diagonal and the first superdiagonal are
62*> overwritten with the upper bidiagonal matrix B; the
63*> elements below the diagonal, with the array TAUQ, represent
64*> the orthogonal matrix Q as a product of elementary
65*> reflectors, and the elements above the first superdiagonal,
66*> with the array TAUP, represent the orthogonal matrix P as
67*> a product of elementary reflectors;
68*> if m < n, the diagonal and the first subdiagonal are
69*> overwritten with the lower bidiagonal matrix B; the
70*> elements below the first subdiagonal, with the array TAUQ,
71*> represent the orthogonal matrix Q as a product of
72*> elementary reflectors, and the elements above the diagonal,
73*> with the array TAUP, represent the orthogonal matrix P as
74*> a product of elementary reflectors.
75*> See Further Details.
76*> \endverbatim
77*>
78*> \param[in] LDA
79*> \verbatim
80*> LDA is INTEGER
81*> The leading dimension of the array A. LDA >= max(1,M).
82*> \endverbatim
83*>
84*> \param[out] D
85*> \verbatim
86*> D is DOUBLE PRECISION array, dimension (min(M,N))
87*> The diagonal elements of the bidiagonal matrix B:
88*> D(i) = A(i,i).
89*> \endverbatim
90*>
91*> \param[out] E
92*> \verbatim
93*> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
94*> The off-diagonal elements of the bidiagonal matrix B:
95*> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
96*> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
97*> \endverbatim
98*>
99*> \param[out] TAUQ
100*> \verbatim
101*> TAUQ is DOUBLE PRECISION array, dimension (min(M,N))
102*> The scalar factors of the elementary reflectors which
103*> represent the orthogonal matrix Q. See Further Details.
104*> \endverbatim
105*>
106*> \param[out] TAUP
107*> \verbatim
108*> TAUP is DOUBLE PRECISION array, dimension (min(M,N))
109*> The scalar factors of the elementary reflectors which
110*> represent the orthogonal matrix P. See Further Details.
111*> \endverbatim
112*>
113*> \param[out] WORK
114*> \verbatim
115*> WORK is DOUBLE PRECISION array, dimension (max(M,N))
116*> \endverbatim
117*>
118*> \param[out] INFO
119*> \verbatim
120*> INFO is INTEGER
121*> = 0: successful exit.
122*> < 0: if INFO = -i, the i-th argument had an illegal value.
123*> \endverbatim
124*
125* Authors:
126* ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \ingroup gebd2
134*
135*> \par Further Details:
136* =====================
137*>
138*> \verbatim
139*>
140*> The matrices Q and P are represented as products of elementary
141*> reflectors:
142*>
143*> If m >= n,
144*>
145*> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
146*>
147*> Each H(i) and G(i) has the form:
148*>
149*> H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T
150*>
151*> where tauq and taup are real scalars, and v and u are real vectors;
152*> v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
153*> u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
154*> tauq is stored in TAUQ(i) and taup in TAUP(i).
155*>
156*> If m < n,
157*>
158*> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
159*>
160*> Each H(i) and G(i) has the form:
161*>
162*> H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T
163*>
164*> where tauq and taup are real scalars, and v and u are real vectors;
165*> v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
166*> u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
167*> tauq is stored in TAUQ(i) and taup in TAUP(i).
168*>
169*> The contents of A on exit are illustrated by the following examples:
170*>
171*> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
172*>
173*> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
174*> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
175*> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
176*> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
177*> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
178*> ( v1 v2 v3 v4 v5 )
179*>
180*> where d and e denote diagonal and off-diagonal elements of B, vi
181*> denotes an element of the vector defining H(i), and ui an element of
182*> the vector defining G(i).
183*> \endverbatim
184*>
185* =====================================================================
186 SUBROUTINE dgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
187*
188* -- LAPACK computational routine --
189* -- LAPACK is a software package provided by Univ. of Tennessee, --
190* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
191*
192* .. Scalar Arguments ..
193 INTEGER INFO, LDA, M, N
194* ..
195* .. Array Arguments ..
196 DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ),
197 $ TAUQ( * ), WORK( * )
198* ..
199*
200* =====================================================================
201*
202* .. Parameters ..
203 DOUBLE PRECISION ZERO
204 parameter( zero = 0.0d+0 )
205* ..
206* .. Local Scalars ..
207 INTEGER I
208* ..
209* .. External Subroutines ..
210 EXTERNAL dlarf1f, dlarfg, xerbla
211* ..
212* .. Intrinsic Functions ..
213 INTRINSIC max, min
214* ..
215* .. Executable Statements ..
216*
217* Test the input parameters
218*
219 info = 0
220 IF( m.LT.0 ) THEN
221 info = -1
222 ELSE IF( n.LT.0 ) THEN
223 info = -2
224 ELSE IF( lda.LT.max( 1, m ) ) THEN
225 info = -4
226 END IF
227 IF( info.LT.0 ) THEN
228 CALL xerbla( 'DGEBD2', -info )
229 RETURN
230 END IF
231*
232 IF( m.GE.n ) THEN
233*
234* Reduce to upper bidiagonal form
235*
236 DO 10 i = 1, n
237*
238* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
239*
240 CALL dlarfg( m-i+1, a( i, i ), a( min( i+1, m ), i ), 1,
241 $ tauq( i ) )
242 d( i ) = a( i, i )
243*
244* Apply H(i) to A(i:m,i+1:n) from the left
245*
246 IF( i.LT.n )
247 $ CALL dlarf1f( 'Left', m-i+1, n-i, a( i, i ), 1,
248 $ tauq( i ),
249 $ a( i, i+1 ), lda, work )
250*
251 IF( i.LT.n ) THEN
252*
253* Generate elementary reflector G(i) to annihilate
254* A(i,i+2:n)
255*
256 CALL dlarfg( n-i, a( i, i+1 ), a( i, min( i+2, n ) ),
257 $ lda, taup( i ) )
258 e( i ) = a( i, i+1 )
259*
260* Apply G(i) to A(i+1:m,i+1:n) from the right
261*
262 CALL dlarf1f( 'Right', m-i, n-i, a( i, i+1 ), lda,
263 $ taup( i ), a( i+1, i+1 ), lda, work )
264 ELSE
265 taup( i ) = zero
266 END IF
267 10 CONTINUE
268 ELSE
269*
270* Reduce to lower bidiagonal form
271*
272 DO 20 i = 1, m
273*
274* Generate elementary reflector G(i) to annihilate A(i,i+1:n)
275*
276 CALL dlarfg( n-i+1, a( i, i ), a( i, min( i+1, n ) ),
277 $ lda,
278 $ taup( i ) )
279 d( i ) = a( i, i )
280*
281* Apply G(i) to A(i+1:m,i:n) from the right
282*
283 IF( i.LT.m )
284 $ CALL dlarf1f( 'Right', m-i, n-i+1, a( i, i ), lda,
285 $ taup( i ), a( i+1, i ), lda, work )
286*
287 IF( i.LT.m ) THEN
288*
289* Generate elementary reflector H(i) to annihilate
290* A(i+2:m,i)
291*
292 CALL dlarfg( m-i, a( i+1, i ), a( min( i+2, m ), i ),
293 $ 1,
294 $ tauq( i ) )
295 e( i ) = a( i+1, i )
296*
297* Apply H(i) to A(i+1:m,i+1:n) from the left
298*
299 CALL dlarf1f( 'Left', m-i, n-i, a( i+1, i ), 1,
300 $ tauq( i ),
301 $ a( i+1, i+1 ), lda, work )
302 ELSE
303 tauq( i ) = zero
304 END IF
305 20 CONTINUE
306 END IF
307 RETURN
308*
309* End of DGEBD2
310*
311 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
DGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
Definition dgebd2.f:187
subroutine dlarf1f(side, m, n, v, incv, tau, c, ldc, work)
DLARF1F applies an elementary reflector to a general rectangular
Definition dlarf1f.f:157
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:104