LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgesvxx()

subroutine cgesvxx ( character fact,
character trans,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
character equed,
real, dimension( * ) r,
real, dimension( * ) c,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx , * ) x,
integer ldx,
real rcond,
real rpvgrw,
real, dimension( * ) berr,
integer n_err_bnds,
real, dimension( nrhs, * ) err_bnds_norm,
real, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
real, dimension( * ) params,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CGESVXX computes the solution to system of linear equations A * X = B for GE matrices

Download CGESVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    CGESVXX uses the LU factorization to compute the solution to a
!>    complex system of linear equations  A * X = B,  where A is an
!>    N-by-N matrix and X and B are N-by-NRHS matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. CGESVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    CGESVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    CGESVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what CGESVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', real scaling factors are computed to equilibrate
!>    the system:
!>
!>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
!>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
!>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
!>    or diag(C)*B (if TRANS = 'T' or 'C').
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>      A = P * L * U,
!>
!>    where P is a permutation matrix, L is a unit lower triangular
!>    matrix, and U is upper triangular.
!>
!>    3. If some U(i,i)=0, so that U is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND). If the reciprocal of the condition number is less
!>    than machine precision, the routine still goes on to solve for X
!>    and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
!>    that it solves the original system before equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by R and C.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>     Specifies the form of the system of equations:
!>       = 'N':  A * X = B     (No transpose)
!>       = 'T':  A**T * X = B  (Transpose)
!>       = 'C':  A**H * X = B  (Conjugate Transpose)
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
!>     not 'N', then A must have been equilibrated by the scaling
!>     factors in R and/or C.  A is not modified if FACT = 'F' or
!>     'N', or if FACT = 'E' and EQUED = 'N' on exit.
!>
!>     On exit, if EQUED .ne. 'N', A is scaled as follows:
!>     EQUED = 'R':  A := diag(R) * A
!>     EQUED = 'C':  A := A * diag(C)
!>     EQUED = 'B':  A := diag(R) * A * diag(C).
!> 
[in]LDA
!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]AF
!>          AF is COMPLEX array, dimension (LDAF,N)
!>     If FACT = 'F', then AF is an input argument and on entry
!>     contains the factors L and U from the factorization
!>     A = P*L*U as computed by CGETRF.  If EQUED .ne. 'N', then
!>     AF is the factored form of the equilibrated matrix A.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the equilibrated matrix A (see the description of A for
!>     the form of the equilibrated matrix).
!> 
[in]LDAF
!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains the pivot indices from the factorization A = P*L*U
!>     as computed by CGETRF; row i of the matrix was interchanged
!>     with row IPIV(i).
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the equilibrated matrix A.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'R':  Row equilibration, i.e., A has been premultiplied by
!>               diag(R).
!>       = 'C':  Column equilibration, i.e., A has been postmultiplied
!>               by diag(C).
!>       = 'B':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(R) * A * diag(C).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]R
!>          R is REAL array, dimension (N)
!>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
!>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
!>     is not accessed.  R is an input argument if FACT = 'F';
!>     otherwise, R is an output argument.  If FACT = 'F' and
!>     EQUED = 'R' or 'B', each element of R must be positive.
!>     If R is output, each element of R is a power of the radix.
!>     If R is input, each element of R should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]C
!>          C is REAL array, dimension (N)
!>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
!>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
!>     is not accessed.  C is an input argument if FACT = 'F';
!>     otherwise, C is an output argument.  If FACT = 'F' and
!>     EQUED = 'C' or 'B', each element of C must be positive.
!>     If C is output, each element of C is a power of the radix.
!>     If C is input, each element of C should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
!>        diag(R)*B;
!>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
!>        overwritten by diag(C)*B.
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit
!>     if EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
!>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is REAL
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.  In CGESVX, this quantity is
!>     returned in WORK(1).
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is REAL array, dimension NPARAMS
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the double-precision refinement algorithm,
!>                    possibly with doubled-single computations if the
!>                    compilation environment does not support DOUBLE
!>                    PRECISION.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 536 of file cgesvxx.f.

542*
543* -- LAPACK driver routine --
544* -- LAPACK is a software package provided by Univ. of Tennessee, --
545* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
546*
547* .. Scalar Arguments ..
548 CHARACTER EQUED, FACT, TRANS
549 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
550 $ N_ERR_BNDS
551 REAL RCOND, RPVGRW
552* ..
553* .. Array Arguments ..
554 INTEGER IPIV( * )
555 COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
556 $ X( LDX , * ),WORK( * )
557 REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
558 $ ERR_BNDS_NORM( NRHS, * ),
559 $ ERR_BNDS_COMP( NRHS, * ), RWORK( * )
560* ..
561*
562* ==================================================================
563*
564* .. Parameters ..
565 REAL ZERO, ONE
566 parameter( zero = 0.0e+0, one = 1.0e+0 )
567 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
568 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
569 INTEGER CMP_ERR_I, PIV_GROWTH_I
570 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
571 $ berr_i = 3 )
572 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
573 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
574 $ piv_growth_i = 9 )
575* ..
576* .. Local Scalars ..
577 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
578 INTEGER INFEQU, J
579 REAL AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
580 $ ROWCND, SMLNUM
581* ..
582* .. External Functions ..
583 EXTERNAL lsame, slamch, cla_gerpvgrw
584 LOGICAL LSAME
585 REAL SLAMCH, CLA_GERPVGRW
586* ..
587* .. External Subroutines ..
588 EXTERNAL cgeequb, cgetrf, cgetrs, clacpy,
589 $ claqge,
591* ..
592* .. Intrinsic Functions ..
593 INTRINSIC max, min
594* ..
595* .. Executable Statements ..
596*
597 info = 0
598 nofact = lsame( fact, 'N' )
599 equil = lsame( fact, 'E' )
600 notran = lsame( trans, 'N' )
601 smlnum = slamch( 'Safe minimum' )
602 bignum = one / smlnum
603 IF( nofact .OR. equil ) THEN
604 equed = 'N'
605 rowequ = .false.
606 colequ = .false.
607 ELSE
608 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
609 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
610 END IF
611*
612* Default is failure. If an input parameter is wrong or
613* factorization fails, make everything look horrible. Only the
614* pivot growth is set here, the rest is initialized in CGERFSX.
615*
616 rpvgrw = zero
617*
618* Test the input parameters. PARAMS is not tested until CGERFSX.
619*
620 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
621 $ lsame( fact, 'F' ) ) THEN
622 info = -1
623 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
624 $ lsame( trans, 'C' ) ) THEN
625 info = -2
626 ELSE IF( n.LT.0 ) THEN
627 info = -3
628 ELSE IF( nrhs.LT.0 ) THEN
629 info = -4
630 ELSE IF( lda.LT.max( 1, n ) ) THEN
631 info = -6
632 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
633 info = -8
634 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
635 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
636 info = -10
637 ELSE
638 IF( rowequ ) THEN
639 rcmin = bignum
640 rcmax = zero
641 DO 10 j = 1, n
642 rcmin = min( rcmin, r( j ) )
643 rcmax = max( rcmax, r( j ) )
644 10 CONTINUE
645 IF( rcmin.LE.zero ) THEN
646 info = -11
647 ELSE IF( n.GT.0 ) THEN
648 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
649 ELSE
650 rowcnd = one
651 END IF
652 END IF
653 IF( colequ .AND. info.EQ.0 ) THEN
654 rcmin = bignum
655 rcmax = zero
656 DO 20 j = 1, n
657 rcmin = min( rcmin, c( j ) )
658 rcmax = max( rcmax, c( j ) )
659 20 CONTINUE
660 IF( rcmin.LE.zero ) THEN
661 info = -12
662 ELSE IF( n.GT.0 ) THEN
663 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
664 ELSE
665 colcnd = one
666 END IF
667 END IF
668 IF( info.EQ.0 ) THEN
669 IF( ldb.LT.max( 1, n ) ) THEN
670 info = -14
671 ELSE IF( ldx.LT.max( 1, n ) ) THEN
672 info = -16
673 END IF
674 END IF
675 END IF
676*
677 IF( info.NE.0 ) THEN
678 CALL xerbla( 'CGESVXX', -info )
679 RETURN
680 END IF
681*
682 IF( equil ) THEN
683*
684* Compute row and column scalings to equilibrate the matrix A.
685*
686 CALL cgeequb( n, n, a, lda, r, c, rowcnd, colcnd, amax,
687 $ infequ )
688 IF( infequ.EQ.0 ) THEN
689*
690* Equilibrate the matrix.
691*
692 CALL claqge( n, n, a, lda, r, c, rowcnd, colcnd, amax,
693 $ equed )
694 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
695 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
696 END IF
697*
698* If the scaling factors are not applied, set them to 1.0.
699*
700 IF ( .NOT.rowequ ) THEN
701 DO j = 1, n
702 r( j ) = 1.0
703 END DO
704 END IF
705 IF ( .NOT.colequ ) THEN
706 DO j = 1, n
707 c( j ) = 1.0
708 END DO
709 END IF
710 END IF
711*
712* Scale the right-hand side.
713*
714 IF( notran ) THEN
715 IF( rowequ ) CALL clascl2( n, nrhs, r, b, ldb )
716 ELSE
717 IF( colequ ) CALL clascl2( n, nrhs, c, b, ldb )
718 END IF
719*
720 IF( nofact .OR. equil ) THEN
721*
722* Compute the LU factorization of A.
723*
724 CALL clacpy( 'Full', n, n, a, lda, af, ldaf )
725 CALL cgetrf( n, n, af, ldaf, ipiv, info )
726*
727* Return if INFO is non-zero.
728*
729 IF( info.GT.0 ) THEN
730*
731* Pivot in column INFO is exactly 0
732* Compute the reciprocal pivot growth factor of the
733* leading rank-deficient INFO columns of A.
734*
735 rpvgrw = cla_gerpvgrw( n, info, a, lda, af, ldaf )
736 RETURN
737 END IF
738 END IF
739*
740* Compute the reciprocal pivot growth factor RPVGRW.
741*
742 rpvgrw = cla_gerpvgrw( n, n, a, lda, af, ldaf )
743*
744* Compute the solution matrix X.
745*
746 CALL clacpy( 'Full', n, nrhs, b, ldb, x, ldx )
747 CALL cgetrs( trans, n, nrhs, af, ldaf, ipiv, x, ldx, info )
748*
749* Use iterative refinement to improve the computed solution and
750* compute error bounds and backward error estimates for it.
751*
752 CALL cgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf,
753 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
754 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
755 $ work, rwork, info )
756*
757* Scale solutions.
758*
759 IF ( colequ .AND. notran ) THEN
760 CALL clascl2 ( n, nrhs, c, x, ldx )
761 ELSE IF ( rowequ .AND. .NOT.notran ) THEN
762 CALL clascl2 ( n, nrhs, r, x, ldx )
763 END IF
764*
765 RETURN
766*
767* End of CGESVXX
768*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgeequb(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
CGEEQUB
Definition cgeequb.f:145
subroutine cgerfsx(trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CGERFSX
Definition cgerfsx.f:413
subroutine cgetrf(m, n, a, lda, ipiv, info)
CGETRF
Definition cgetrf.f:106
subroutine cgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
CGETRS
Definition cgetrs.f:119
real function cla_gerpvgrw(n, ncols, a, lda, af, ldaf)
CLA_GERPVGRW multiplies a square real matrix by a complex matrix.
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine claqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
CLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ.
Definition claqge.f:141
subroutine clascl2(m, n, d, x, ldx)
CLASCL2 performs diagonal scaling on a matrix.
Definition clascl2.f:89
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: