536 SUBROUTINE cgesvxx( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF,
538 $ EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW,
539 $ BERR, N_ERR_BNDS, ERR_BNDS_NORM,
540 $ ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
548 CHARACTER EQUED, FACT, TRANS
549 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
555 COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
556 $ x( ldx , * ),work( * )
557 REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
558 $ ERR_BNDS_NORM( NRHS, * ),
559 $ err_bnds_comp( nrhs, * ), rwork( * )
566 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
567 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
568 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
569 INTEGER CMP_ERR_I, PIV_GROWTH_I
570 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
572 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
573 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
577 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
579 REAL AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
585 REAL SLAMCH, CLA_GERPVGRW
598 nofact = lsame( fact,
'N' )
599 equil = lsame( fact,
'E' )
600 notran = lsame( trans,
'N' )
601 smlnum = slamch(
'Safe minimum' )
602 bignum = one / smlnum
603 IF( nofact .OR. equil )
THEN
608 rowequ = lsame( equed,
'R' ) .OR. lsame( equed,
'B' )
609 colequ = lsame( equed,
'C' ) .OR. lsame( equed,
'B' )
620 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
621 $ lsame( fact,
'F' ) )
THEN
623 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans,
'T' ) .AND. .NOT.
624 $ lsame( trans,
'C' ) )
THEN
626 ELSE IF( n.LT.0 )
THEN
628 ELSE IF( nrhs.LT.0 )
THEN
630 ELSE IF( lda.LT.max( 1, n ) )
THEN
632 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
634 ELSE IF( lsame( fact,
'F' ) .AND. .NOT.
635 $ ( rowequ .OR. colequ .OR. lsame( equed,
'N' ) ) )
THEN
642 rcmin = min( rcmin, r( j ) )
643 rcmax = max( rcmax, r( j ) )
645 IF( rcmin.LE.zero )
THEN
647 ELSE IF( n.GT.0 )
THEN
648 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
653 IF( colequ .AND. info.EQ.0 )
THEN
657 rcmin = min( rcmin, c( j ) )
658 rcmax = max( rcmax, c( j ) )
660 IF( rcmin.LE.zero )
THEN
662 ELSE IF( n.GT.0 )
THEN
663 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
669 IF( ldb.LT.max( 1, n ) )
THEN
671 ELSE IF( ldx.LT.max( 1, n ) )
THEN
678 CALL xerbla(
'CGESVXX', -info )
686 CALL cgeequb( n, n, a, lda, r, c, rowcnd, colcnd, amax,
688 IF( infequ.EQ.0 )
THEN
692 CALL claqge( n, n, a, lda, r, c, rowcnd, colcnd, amax,
694 rowequ = lsame( equed,
'R' ) .OR. lsame( equed,
'B' )
695 colequ = lsame( equed,
'C' ) .OR. lsame( equed,
'B' )
700 IF ( .NOT.rowequ )
THEN
705 IF ( .NOT.colequ )
THEN
715 IF( rowequ )
CALL clascl2( n, nrhs, r, b, ldb )
717 IF( colequ )
CALL clascl2( n, nrhs, c, b, ldb )
720 IF( nofact .OR. equil )
THEN
724 CALL clacpy(
'Full', n, n, a, lda, af, ldaf )
725 CALL cgetrf( n, n, af, ldaf, ipiv, info )
735 rpvgrw = cla_gerpvgrw( n, info, a, lda, af, ldaf )
742 rpvgrw = cla_gerpvgrw( n, n, a, lda, af, ldaf )
746 CALL clacpy(
'Full', n, nrhs, b, ldb, x, ldx )
747 CALL cgetrs( trans, n, nrhs, af, ldaf, ipiv, x, ldx, info )
752 CALL cgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf,
753 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
754 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
755 $ work, rwork, info )
759 IF ( colequ .AND. notran )
THEN
760 CALL clascl2 ( n, nrhs, c, x, ldx )
761 ELSE IF ( rowequ .AND. .NOT.notran )
THEN
762 CALL clascl2 ( n, nrhs, r, x, ldx )
subroutine cgerfsx(trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CGERFSX
subroutine cgesvxx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CGESVXX computes the solution to system of linear equations A * X = B for GE matrices