LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cla_gerpvgrw.f
Go to the documentation of this file.
1*> \brief \b CLA_GERPVGRW multiplies a square real matrix by a complex matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLA_GERPVGRW + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gerpvgrw.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gerpvgrw.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gerpvgrw.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* REAL FUNCTION CLA_GERPVGRW( N, NCOLS, A, LDA, AF, LDAF )
22*
23* .. Scalar Arguments ..
24* INTEGER N, NCOLS, LDA, LDAF
25* ..
26* .. Array Arguments ..
27* COMPLEX A( LDA, * ), AF( LDAF, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*>
37*> CLA_GERPVGRW computes the reciprocal pivot growth factor
38*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
39*> much less than 1, the stability of the LU factorization of the
40*> (equilibrated) matrix A could be poor. This also means that the
41*> solution X, estimated condition numbers, and error bounds could be
42*> unreliable.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] N
49*> \verbatim
50*> N is INTEGER
51*> The number of linear equations, i.e., the order of the
52*> matrix A. N >= 0.
53*> \endverbatim
54*>
55*> \param[in] NCOLS
56*> \verbatim
57*> NCOLS is INTEGER
58*> The number of columns of the matrix A. NCOLS >= 0.
59*> \endverbatim
60*>
61*> \param[in] A
62*> \verbatim
63*> A is COMPLEX array, dimension (LDA,N)
64*> On entry, the N-by-N matrix A.
65*> \endverbatim
66*>
67*> \param[in] LDA
68*> \verbatim
69*> LDA is INTEGER
70*> The leading dimension of the array A. LDA >= max(1,N).
71*> \endverbatim
72*>
73*> \param[in] AF
74*> \verbatim
75*> AF is COMPLEX array, dimension (LDAF,N)
76*> The factors L and U from the factorization
77*> A = P*L*U as computed by CGETRF.
78*> \endverbatim
79*>
80*> \param[in] LDAF
81*> \verbatim
82*> LDAF is INTEGER
83*> The leading dimension of the array AF. LDAF >= max(1,N).
84*> \endverbatim
85*
86* Authors:
87* ========
88*
89*> \author Univ. of Tennessee
90*> \author Univ. of California Berkeley
91*> \author Univ. of Colorado Denver
92*> \author NAG Ltd.
93*
94*> \ingroup la_gerpvgrw
95*
96* =====================================================================
97 REAL function cla_gerpvgrw( n, ncols, a, lda, af, ldaf )
98*
99* -- LAPACK computational routine --
100* -- LAPACK is a software package provided by Univ. of Tennessee, --
101* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102*
103* .. Scalar Arguments ..
104 INTEGER n, ncols, lda, ldaf
105* ..
106* .. Array Arguments ..
107 COMPLEX a( lda, * ), af( ldaf, * )
108* ..
109*
110* =====================================================================
111*
112* .. Local Scalars ..
113 INTEGER i, j
114 REAL amax, umax, rpvgrw
115 COMPLEX zdum
116* ..
117* .. Intrinsic Functions ..
118 INTRINSIC max, min, abs, real, aimag
119* ..
120* .. Statement Functions ..
121 REAL cabs1
122* ..
123* .. Statement Function Definitions ..
124 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
125* ..
126* .. Executable Statements ..
127*
128 rpvgrw = 1.0
129
130 DO j = 1, ncols
131 amax = 0.0
132 umax = 0.0
133 DO i = 1, n
134 amax = max( cabs1( a( i, j ) ), amax )
135 END DO
136 DO i = 1, j
137 umax = max( cabs1( af( i, j ) ), umax )
138 END DO
139 IF ( umax /= 0.0 ) THEN
140 rpvgrw = min( amax / umax, rpvgrw )
141 END IF
142 END DO
143 cla_gerpvgrw = rpvgrw
144*
145* End of CLA_GERPVGRW
146*
147 END
real function cla_gerpvgrw(n, ncols, a, lda, af, ldaf)
CLA_GERPVGRW multiplies a square real matrix by a complex matrix.