LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zsgt01 | ( | integer | itype, |
character | uplo, | ||
integer | n, | ||
integer | m, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
complex*16, dimension( ldz, * ) | z, | ||
integer | ldz, | ||
double precision, dimension( * ) | d, | ||
complex*16, dimension( * ) | work, | ||
double precision, dimension( * ) | rwork, | ||
double precision, dimension( * ) | result ) |
ZSGT01
!> !> CDGT01 checks a decomposition of the form !> !> A Z = B Z D or !> A B Z = Z D or !> B A Z = Z D !> !> where A is a Hermitian matrix, B is Hermitian positive definite, !> Z is unitary, and D is diagonal. !> !> One of the following test ratios is computed: !> !> ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) !>
[in] | ITYPE | !> ITYPE is INTEGER !> The form of the Hermitian generalized eigenproblem. !> = 1: A*z = (lambda)*B*z !> = 2: A*B*z = (lambda)*z !> = 3: B*A*z = (lambda)*z !> |
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrices A and B is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | M | !> M is INTEGER !> The number of eigenvalues found. M >= 0. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> The original Hermitian matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[in] | B | !> B is COMPLEX*16 array, dimension (LDB, N) !> The original Hermitian positive definite matrix B. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[in] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, M) !> The computed eigenvectors of the generalized eigenproblem. !> |
[in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= max(1,N). !> |
[in] | D | !> D is DOUBLE PRECISION array, dimension (M) !> The computed eigenvalues of the generalized eigenproblem. !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (N*N) !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
[out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (1) !> The test ratio as described above. !> |
Definition at line 150 of file zsgt01.f.