LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zsgt01()

subroutine zsgt01 ( integer  itype,
character  uplo,
integer  n,
integer  m,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( ldz, * )  z,
integer  ldz,
double precision, dimension( * )  d,
complex*16, dimension( * )  work,
double precision, dimension( * )  rwork,
double precision, dimension( * )  result 
)

ZSGT01

Purpose:
 CDGT01 checks a decomposition of the form

    A Z   =  B Z D or
    A B Z =  Z D or
    B A Z =  Z D

 where A is a Hermitian matrix, B is Hermitian positive definite,
 Z is unitary, and D is diagonal.

 One of the following test ratios is computed:

 ITYPE = 1:  RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )

 ITYPE = 2:  RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )

 ITYPE = 3:  RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
Parameters
[in]ITYPE
          ITYPE is INTEGER
          The form of the Hermitian generalized eigenproblem.
          = 1:  A*z = (lambda)*B*z
          = 2:  A*B*z = (lambda)*z
          = 3:  B*A*z = (lambda)*z
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrices A and B is stored.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]M
          M is INTEGER
          The number of eigenvalues found.  M >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA, N)
          The original Hermitian matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]B
          B is COMPLEX*16 array, dimension (LDB, N)
          The original Hermitian positive definite matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]Z
          Z is COMPLEX*16 array, dimension (LDZ, M)
          The computed eigenvectors of the generalized eigenproblem.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= max(1,N).
[in]D
          D is DOUBLE PRECISION array, dimension (M)
          The computed eigenvalues of the generalized eigenproblem.
[out]WORK
          WORK is COMPLEX*16 array, dimension (N*N)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (1)
          The test ratio as described above.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 150 of file zsgt01.f.

152*
153* -- LAPACK test routine --
154* -- LAPACK is a software package provided by Univ. of Tennessee, --
155* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
156*
157* .. Scalar Arguments ..
158 CHARACTER UPLO
159 INTEGER ITYPE, LDA, LDB, LDZ, M, N
160* ..
161* .. Array Arguments ..
162 DOUBLE PRECISION D( * ), RESULT( * ), RWORK( * )
163 COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ),
164 $ Z( LDZ, * )
165* ..
166*
167* =====================================================================
168*
169* .. Parameters ..
170 DOUBLE PRECISION ZERO, ONE
171 parameter( zero = 0.0d+0, one = 1.0d+0 )
172 COMPLEX*16 CZERO, CONE
173 parameter( czero = ( 0.0d+0, 0.0d+0 ),
174 $ cone = ( 1.0d+0, 0.0d+0 ) )
175* ..
176* .. Local Scalars ..
177 INTEGER I
178 DOUBLE PRECISION ANORM, ULP
179* ..
180* .. External Functions ..
181 DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
182 EXTERNAL dlamch, zlange, zlanhe
183* ..
184* .. External Subroutines ..
185 EXTERNAL zdscal, zhemm
186* ..
187* .. Executable Statements ..
188*
189 result( 1 ) = zero
190 IF( n.LE.0 )
191 $ RETURN
192*
193 ulp = dlamch( 'Epsilon' )
194*
195* Compute product of 1-norms of A and Z.
196*
197 anorm = zlanhe( '1', uplo, n, a, lda, rwork )*
198 $ zlange( '1', n, m, z, ldz, rwork )
199 IF( anorm.EQ.zero )
200 $ anorm = one
201*
202 IF( itype.EQ.1 ) THEN
203*
204* Norm of AZ - BZD
205*
206 CALL zhemm( 'Left', uplo, n, m, cone, a, lda, z, ldz, czero,
207 $ work, n )
208 DO 10 i = 1, m
209 CALL zdscal( n, d( i ), z( 1, i ), 1 )
210 10 CONTINUE
211 CALL zhemm( 'Left', uplo, n, m, cone, b, ldb, z, ldz, -cone,
212 $ work, n )
213*
214 result( 1 ) = ( zlange( '1', n, m, work, n, rwork ) / anorm ) /
215 $ ( n*ulp )
216*
217 ELSE IF( itype.EQ.2 ) THEN
218*
219* Norm of ABZ - ZD
220*
221 CALL zhemm( 'Left', uplo, n, m, cone, b, ldb, z, ldz, czero,
222 $ work, n )
223 DO 20 i = 1, m
224 CALL zdscal( n, d( i ), z( 1, i ), 1 )
225 20 CONTINUE
226 CALL zhemm( 'Left', uplo, n, m, cone, a, lda, work, n, -cone,
227 $ z, ldz )
228*
229 result( 1 ) = ( zlange( '1', n, m, z, ldz, rwork ) / anorm ) /
230 $ ( n*ulp )
231*
232 ELSE IF( itype.EQ.3 ) THEN
233*
234* Norm of BAZ - ZD
235*
236 CALL zhemm( 'Left', uplo, n, m, cone, a, lda, z, ldz, czero,
237 $ work, n )
238 DO 30 i = 1, m
239 CALL zdscal( n, d( i ), z( 1, i ), 1 )
240 30 CONTINUE
241 CALL zhemm( 'Left', uplo, n, m, cone, b, ldb, work, n, -cone,
242 $ z, ldz )
243*
244 result( 1 ) = ( zlange( '1', n, m, z, ldz, rwork ) / anorm ) /
245 $ ( n*ulp )
246 END IF
247*
248 RETURN
249*
250* End of ZDGT01
251*
subroutine zhemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
ZHEMM
Definition zhemm.f:191
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:115
double precision function zlanhe(norm, uplo, n, a, lda, work)
ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlanhe.f:124
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: