LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgedmdq()

subroutine cgedmdq ( character, intent(in)  jobs,
character, intent(in)  jobz,
character, intent(in)  jobr,
character, intent(in)  jobq,
character, intent(in)  jobt,
character, intent(in)  jobf,
integer, intent(in)  whtsvd,
integer, intent(in)  m,
integer, intent(in)  n,
complex(kind=wp), dimension(ldf,*), intent(inout)  f,
integer, intent(in)  ldf,
complex(kind=wp), dimension(ldx,*), intent(out)  x,
integer, intent(in)  ldx,
complex(kind=wp), dimension(ldy,*), intent(out)  y,
integer, intent(in)  ldy,
integer, intent(in)  nrnk,
real(kind=wp), intent(in)  tol,
integer, intent(out)  k,
complex(kind=wp), dimension(*), intent(out)  eigs,
complex(kind=wp), dimension(ldz,*), intent(out)  z,
integer, intent(in)  ldz,
real(kind=wp), dimension(*), intent(out)  res,
complex(kind=wp), dimension(ldb,*), intent(out)  b,
integer, intent(in)  ldb,
complex(kind=wp), dimension(ldv,*), intent(out)  v,
integer, intent(in)  ldv,
complex(kind=wp), dimension(lds,*), intent(out)  s,
integer, intent(in)  lds,
complex(kind=wp), dimension(*), intent(out)  zwork,
integer, intent(in)  lzwork,
real(kind=wp), dimension(*), intent(out)  work,
integer, intent(in)  lwork,
integer, dimension(*), intent(out)  iwork,
integer, intent(in)  liwork,
integer, intent(out)  info 
)

CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.

Purpose:
    CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
    a pair of data snapshot matrices, using a QR factorization
    based compression of the data. For the input matrices
    X and Y such that Y = A*X with an unaccessible matrix
    A, CGEDMDQ computes a certain number of Ritz pairs of A using
    the standard Rayleigh-Ritz extraction from a subspace of
    range(X) that is determined using the leading left singular 
    vectors of X. Optionally, CGEDMDQ returns the residuals 
    of the computed Ritz pairs, the information needed for
    a refinement of the Ritz vectors, or the eigenvectors of
    the Exact DMD.
    For further details see the references listed
    below. For more details of the implementation see [3].      
References:
    [1] P. Schmid: Dynamic mode decomposition of numerical
        and experimental data,
        Journal of Fluid Mechanics 656, 5-28, 2010.
    [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
        decompositions: analysis and enhancements,
        SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
    [3] Z. Drmac: A LAPACK implementation of the Dynamic
        Mode Decomposition I. Technical report. AIMDyn Inc.
        and LAPACK Working Note 298.      
    [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. 
        Brunton, N. Kutz: On Dynamic Mode Decomposition:
        Theory and Applications, Journal of Computational
        Dynamics 1(2), 391 -421, 2014.
Developed and supported by:
    Developed and coded by Zlatko Drmac, Faculty of Science,
    University of Zagreb;  drmac@math.hr
    In cooperation with
    AIMdyn Inc., Santa Barbara, CA.
    and supported by
    - DARPA SBIR project "Koopman Operator-Based Forecasting
    for Nonstationary Processes from Near-Term, Limited
    Observational Data" Contract No: W31P4Q-21-C-0007
    - DARPA PAI project "Physics-Informed Machine Learning
    Methodologies" Contract No: HR0011-18-9-0033
    - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
    Framework for Space-Time Analysis of Process Dynamics"
    Contract No: HR0011-16-C-0116
    Any opinions, findings and conclusions or recommendations 
    expressed in this material are those of the author and 
    do not necessarily reflect the views of the DARPA SBIR 
    Program Office.      
Developed and supported by:
    Approved for Public Release, Distribution Unlimited.
    Cleared by DARPA on September 29, 2022      
Parameters
[in]JOBS
    JOBS (input) CHARACTER*1
    Determines whether the initial data snapshots are scaled
    by a diagonal matrix. The data snapshots are the columns
    of F. The leading N-1 columns of F are denoted X and the
    trailing N-1 columns are denoted Y. 
    'S' :: The data snapshots matrices X and Y are multiplied
           with a diagonal matrix D so that X*D has unit
           nonzero columns (in the Euclidean 2-norm)
    'C' :: The snapshots are scaled as with the 'S' option.
           If it is found that an i-th column of X is zero
           vector and the corresponding i-th column of Y is
           non-zero, then the i-th column of Y is set to
           zero and a warning flag is raised.
    'Y' :: The data snapshots matrices X and Y are multiplied
           by a diagonal matrix D so that Y*D has unit
           nonzero columns (in the Euclidean 2-norm)    
    'N' :: No data scaling.   
[in]JOBZ
    JOBZ (input) CHARACTER*1
    Determines whether the eigenvectors (Koopman modes) will
    be computed.
    'V' :: The eigenvectors (Koopman modes) will be computed
           and returned in the matrix Z.
           See the description of Z.
    'F' :: The eigenvectors (Koopman modes) will be returned
           in factored form as the product Z*V, where Z
           is orthonormal and V contains the eigenvectors
           of the corresponding Rayleigh quotient.
           See the descriptions of F, V, Z.
    'Q' :: The eigenvectors (Koopman modes) will be returned
           in factored form as the product Q*Z, where Z
           contains the eigenvectors of the compression of the
           underlying discretised operator onto the span of
           the data snapshots. See the descriptions of F, V, Z.   
           Q is from the inital QR facorization.    
    'N' :: The eigenvectors are not computed.  
[in]JOBR
    JOBR (input) CHARACTER*1 
    Determines whether to compute the residuals.
    'R' :: The residuals for the computed eigenpairs will
           be computed and stored in the array RES.
           See the description of RES.
           For this option to be legal, JOBZ must be 'V'.
    'N' :: The residuals are not computed.
[in]JOBQ
    JOBQ (input) CHARACTER*1 
    Specifies whether to explicitly compute and return the
    unitary matrix from the QR factorization.
    'Q' :: The matrix Q of the QR factorization of the data
           snapshot matrix is computed and stored in the
           array F. See the description of F.       
    'N' :: The matrix Q is not explicitly computed.
[in]JOBT
    JOBT (input) CHARACTER*1 
    Specifies whether to return the upper triangular factor
    from the QR factorization.
    'R' :: The matrix R of the QR factorization of the data 
           snapshot matrix F is returned in the array Y.
           See the description of Y and Further details.       
    'N' :: The matrix R is not returned. 
[in]JOBF
    JOBF (input) CHARACTER*1
    Specifies whether to store information needed for post-
    processing (e.g. computing refined Ritz vectors)
    'R' :: The matrix needed for the refinement of the Ritz
           vectors is computed and stored in the array B.
           See the description of B.
    'E' :: The unscaled eigenvectors of the Exact DMD are 
           computed and returned in the array B. See the
           description of B.
    'N' :: No eigenvector refinement data is computed.   
    To be useful on exit, this option needs JOBQ='Q'.    
[in]WHTSVD
    WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
    Allows for a selection of the SVD algorithm from the
    LAPACK library.
    1 :: CGESVD (the QR SVD algorithm)
    2 :: CGESDD (the Divide and Conquer algorithm; if enough
         workspace available, this is the fastest option)
    3 :: CGESVDQ (the preconditioned QR SVD  ; this and 4
         are the most accurate options)
    4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
         are the most accurate options)
    For the four methods above, a significant difference in
    the accuracy of small singular values is possible if
    the snapshots vary in norm so that X is severely
    ill-conditioned. If small (smaller than EPS*||X||)
    singular values are of interest and JOBS=='N',  then
    the options (3, 4) give the most accurate results, where
    the option 4 is slightly better and with stronger 
    theoretical background.
    If JOBS=='S', i.e. the columns of X will be normalized,
    then all methods give nearly equally accurate results.
[in]M
    M (input) INTEGER, M >= 0 
    The state space dimension (the number of rows of F).
[in]N
    N (input) INTEGER, 0 <= N <= M
    The number of data snapshots from a single trajectory,
    taken at equidistant discrete times. This is the 
    number of columns of F.
[in,out]F
    F (input/output) COMPLEX(KIND=WP) M-by-N array
    > On entry,
    the columns of F are the sequence of data snapshots 
    from a single trajectory, taken at equidistant discrete
    times. It is assumed that the column norms of F are 
    in the range of the normalized floating point numbers. 
    < On exit,
    If JOBQ == 'Q', the array F contains the orthogonal 
    matrix/factor of the QR factorization of the initial 
    data snapshots matrix F. See the description of JOBQ. 
    If JOBQ == 'N', the entries in F strictly below the main
    diagonal contain, column-wise, the information on the 
    Householder vectors, as returned by CGEQRF. The 
    remaining information to restore the orthogonal matrix
    of the initial QR factorization is stored in ZWORK(1:MIN(M,N)). 
    See the description of ZWORK.
[in]LDF
    LDF (input) INTEGER, LDF >= M 
    The leading dimension of the array F.
[in,out]X
    X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
    X is used as workspace to hold representations of the
    leading N-1 snapshots in the orthonormal basis computed
    in the QR factorization of F.
    On exit, the leading K columns of X contain the leading
    K left singular vectors of the above described content
    of X. To lift them to the space of the left singular
    vectors U(:,1:K) of the input data, pre-multiply with the 
    Q factor from the initial QR factorization. 
    See the descriptions of F, K, V  and Z.
[in]LDX
    LDX (input) INTEGER, LDX >= N  
    The leading dimension of the array X. 
[in,out]Y
    Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
    Y is used as workspace to hold representations of the
    trailing N-1 snapshots in the orthonormal basis computed
    in the QR factorization of F.
    On exit, 
    If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
    triangular factor from the QR factorization of the data
    snapshot matrix F.
[in]LDY
    LDY (input) INTEGER , LDY >= N
    The leading dimension of the array Y.   
[in]NRNK
    NRNK (input) INTEGER
    Determines the mode how to compute the numerical rank,
    i.e. how to truncate small singular values of the input
    matrix X. On input, if
    NRNK = -1 :: i-th singular value sigma(i) is truncated
                 if sigma(i) <= TOL*sigma(1)
                 This option is recommended.
    NRNK = -2 :: i-th singular value sigma(i) is truncated
                 if sigma(i) <= TOL*sigma(i-1)
                 This option is included for R&D purposes.
                 It requires highly accurate SVD, which
                 may not be feasible.      
    The numerical rank can be enforced by using positive 
    value of NRNK as follows: 
    0 < NRNK <= N-1 :: at most NRNK largest singular values
    will be used. If the number of the computed nonzero
    singular values is less than NRNK, then only those
    nonzero values will be used and the actually used
    dimension is less than NRNK. The actual number of
    the nonzero singular values is returned in the variable
    K. See the description of K.
[in]TOL
    TOL (input) REAL(KIND=WP), 0 <= TOL < 1
    The tolerance for truncating small singular values.
    See the description of NRNK.  
[out]K
    K (output) INTEGER,  0 <= K <= N 
    The dimension of the SVD/POD basis for the leading N-1
    data snapshots (columns of F) and the number of the 
    computed Ritz pairs. The value of K is determined
    according to the rule set by the parameters NRNK and 
    TOL. See the descriptions of NRNK and TOL. 
[out]EIGS
    EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
    The leading K (K<=N-1) entries of EIGS contain
    the computed eigenvalues (Ritz values).
    See the descriptions of K, and Z.
[out]Z
    Z (workspace/output) COMPLEX(KIND=WP)  M-by-(N-1) array
    If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
    is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
    If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
    Z*V, where Z contains orthonormal matrix (the product of
    Q from the initial QR factorization and the SVD/POD_basis
    returned by CGEDMD in X) and the second factor (the 
    eigenvectors of the Rayleigh quotient) is in the array V, 
    as returned by CGEDMD. That is,  X(:,1:K)*V(:,i)
    is an eigenvector corresponding to EIGS(i). The columns 
    of V(1:K,1:K) are the computed eigenvectors of the 
    K-by-K Rayleigh quotient.  
    See the descriptions of EIGS, X and V.      
[in]LDZ
    LDZ (input) INTEGER , LDZ >= M
    The leading dimension of the array Z.
[out]RES
    RES (output) REAL(KIND=WP) (N-1)-by-1 array
    RES(1:K) contains the residuals for the K computed 
    Ritz pairs, 
    RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
    See the description of EIGS and Z.      
[out]B
    B (output) COMPLEX(KIND=WP)  MIN(M,N)-by-(N-1) array.
    IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
    be used for computing the refined vectors; see further 
    details in the provided references. 
    If JOBF == 'E', B(1:N,1;K) contains 
    A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
    Exact DMD, up to scaling by the inverse eigenvalues.   
    In both cases, the content of B can be lifted to the 
    original dimension of the input data by pre-multiplying
    with the Q factor from the initial QR factorization. 
    Here A denotes a compression of the underlying operator.      
    See the descriptions of F and X.
    If JOBF =='N', then B is not referenced.
[in]LDB
    LDB (input) INTEGER, LDB >= MIN(M,N)
    The leading dimension of the array B.
[out]V
    V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
    On exit, V(1:K,1:K) V contains the K eigenvectors of
    the Rayleigh quotient. The Ritz vectors
    (returned in Z) are the product of Q from the initial QR
    factorization (see the description of F) X (see the 
    description of X) and V.
[in]LDV
    LDV (input) INTEGER, LDV >= N-1
    The leading dimension of the array V.
[out]S
    S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
    The array S(1:K,1:K) is used for the matrix Rayleigh
    quotient. This content is overwritten during
    the eigenvalue decomposition by CGEEV.
    See the description of K.
[in]LDS
    LDS (input) INTEGER, LDS >= N-1        
    The leading dimension of the array S.
[out]LZWORK
    ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
    On exit, 
    ZWORK(1:MIN(M,N)) contains the scalar factors of the 
    elementary reflectors as returned by CGEQRF of the 
    M-by-N input matrix F.   
    If the call to CGEDMDQ is only workspace query, then
    ZWORK(1) contains the minimal complex workspace length and
    ZWORK(2) is the optimal complex workspace length. 
    Hence, the length of work is at least 2.
    See the description of LZWORK.      
[in]LZWORK
    LZWORK (input) INTEGER
    The minimal length of the  workspace vector ZWORK.
    LZWORK is calculated as follows:
    Let MLWQR  = N (minimal workspace for CGEQRF[M,N])
        MLWDMD = minimal workspace for CGEDMD (see the
                 description of LWORK in CGEDMD)
        MLWMQR = N (minimal workspace for 
                   ZUNMQR['L','N',M,N,N])
        MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
        MINMN  = MIN(M,N)      
    Then
    LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
    is further updated as follows:
       if   JOBZ == 'V' or JOBZ == 'F' THEN 
            LZWORK = MAX( LZWORK, MINMN+MLWMQR )
       if   JOBQ == 'Q' THEN
            LZWORK = MAX( ZLWORK, MINMN+MLWGQR)      
[out]WORK
    WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
    On exit,
    WORK(1:N-1) contains the singular values of 
    the input submatrix F(1:M,1:N-1).
    If the call to CGEDMDQ is only workspace query, then
    WORK(1) contains the minimal workspace length and
    WORK(2) is the optimal workspace length. hence, the
    length of work is at least 2.
    See the description of LWORK.
[in]LWORK
    LWORK (input) INTEGER
    The minimal length of the  workspace vector WORK.
    LWORK is the same as in CGEDMD, because in CGEDMDQ
    only CGEDMD requires real workspace for snapshots
    of dimensions MIN(M,N)-by-(N-1).
    If on entry LWORK = -1, then a workspace query is
    assumed and the procedure only computes the minimal
    and the optimal workspace lengths for both WORK and
    IWORK. See the descriptions of WORK and IWORK.          
[out]IWORK
    IWORK (workspace/output) INTEGER LIWORK-by-1 array
    Workspace that is required only if WHTSVD equals
    2 , 3 or 4. (See the description of WHTSVD).
    If on entry LWORK =-1 or LIWORK=-1, then the
    minimal length of IWORK is computed and returned in
    IWORK(1). See the description of LIWORK.
[in]LIWORK
    LIWORK (input) INTEGER
    The minimal length of the workspace vector IWORK.
    If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
    Let M1=MIN(M,N), N1=N-1. Then      
    If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
    If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
    If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
    If on entry LIWORK = -1, then a workspace query is
    assumed and the procedure only computes the minimal
    and the optimal workspace lengths for both WORK and
    IWORK. See the descriptions of WORK and IWORK.
[out]INFO
    INFO (output) INTEGER
    -i < 0 :: On entry, the i-th argument had an
              illegal value
       = 0 :: Successful return.
       = 1 :: Void input. Quick exit (M=0 or N=0).
       = 2 :: The SVD computation of X did not converge.
              Suggestion: Check the input data and/or
              repeat with different WHTSVD.
       = 3 :: The computation of the eigenvalues did not
              converge.
       = 4 :: If data scaling was requested on input and
              the procedure found inconsistency in the data
              such that for some column index i,
              X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
              to zero if JOBS=='C'. The computation proceeds
              with original or modified data and warning
              flag is set with INFO=4.  
Author
Zlatko Drmac

Definition at line 552 of file cgedmdq.f90.

558!
559! -- LAPACK driver routine --
560!
561! -- LAPACK is a software package provided by University of --
562! -- Tennessee, University of California Berkeley, University of --
563! -- Colorado Denver and NAG Ltd.. --
564!
565!.....
566 USE iso_fortran_env
567 IMPLICIT NONE
568 INTEGER, PARAMETER :: WP = real32
569!
570! Scalar arguments
571! ~~~~~~~~~~~~~~~~
572 CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
573 jobt, jobf
574 INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
575 ldy, nrnk, ldz, ldb, ldv, &
576 lds, lzwork, lwork, liwork
577 INTEGER, INTENT(OUT) :: INFO, K
578 REAL(KIND=wp), INTENT(IN) :: tol
579!
580! Array arguments
581! ~~~~~~~~~~~~~~~
582 COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
583 COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
584 z(ldz,*), b(ldb,*), &
585 v(ldv,*), s(lds,*)
586 COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
587 COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
588 REAL(KIND=wp), INTENT(OUT) :: res(*)
589 REAL(KIND=wp), INTENT(OUT) :: work(*)
590 INTEGER, INTENT(OUT) :: IWORK(*)
591!
592! Parameters
593! ~~~~~~~~~~
594 REAL(KIND=wp), PARAMETER :: one = 1.0_wp
595 REAL(KIND=wp), PARAMETER :: zero = 0.0_wp
596! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
597 COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_wp, 0.0_wp )
598!
599! Local scalars
600! ~~~~~~~~~~~~~
601 INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, &
602 mlwdmd, mlwgqr, mlwmqr, mlwork, &
603 mlwqr, olwdmd, olwgqr, olwmqr, &
604 olwork, olwqr
605 LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
606 wnttrf, wntres, wntvec, wntvcf, &
607 wntvcq, wntref, wntex
608 CHARACTER(LEN=1) :: JOBVL
609!
610! External functions (BLAS and LAPACK)
611! ~~~~~~~~~~~~~~~~~
612 LOGICAL LSAME
613 EXTERNAL lsame
614!
615! External subroutines (BLAS and LAPACK)
616! ~~~~~~~~~~~~~~~~~~~~
617 EXTERNAL cgedmd, cgeqrf, clacpy, claset, cungqr, &
619!
620! Intrinsic functions
621! ~~~~~~~~~~~~~~~~~~~
622 INTRINSIC max, min, int
623!..........................................................
624!
625! Test the input arguments
626 wntres = lsame(jobr,'R')
627 sccolx = lsame(jobs,'S') .OR. lsame( jobs, 'C' )
628 sccoly = lsame(jobs,'Y')
629 wntvec = lsame(jobz,'V')
630 wntvcf = lsame(jobz,'F')
631 wntvcq = lsame(jobz,'Q')
632 wntref = lsame(jobf,'R')
633 wntex = lsame(jobf,'E')
634 wantq = lsame(jobq,'Q')
635 wnttrf = lsame(jobt,'R')
636 minmn = min(m,n)
637 info = 0
638 lquery = ( ( lwork == -1 ) .OR. ( liwork == -1 ) )
639!
640 IF ( .NOT. (sccolx .OR. sccoly .OR. &
641 lsame(jobs,'N')) ) THEN
642 info = -1
643 ELSE IF ( .NOT. (wntvec .OR. wntvcf .OR. wntvcq &
644 .OR. lsame(jobz,'N')) ) then
645 info = -2
646 ELSE IF ( .NOT. (wntres .OR. lsame(jobr,'N')) .OR. &
647 ( wntres .AND. lsame(jobz,'N') ) ) then
648 info = -3
649 ELSE IF ( .NOT. (wantq .OR. lsame(jobq,'N')) ) then
650 info = -4
651 ELSE IF ( .NOT. ( wnttrf .OR. lsame(jobt,'N') ) ) then
652 info = -5
653 ELSE IF ( .NOT. (wntref .OR. wntex .OR. &
654 lsame(jobf,'N') ) ) then
655 info = -6
656 ELSE IF ( .NOT. ((whtsvd == 1).OR.(whtsvd == 2).OR. &
657 (whtsvd == 3).OR.(whtsvd == 4)) ) then
658 info = -7
659 ELSE IF ( m < 0 ) then
660 info = -8
661 ELSE IF ( ( n < 0 ) .OR. ( n > m+1 ) ) then
662 info = -9
663 ELSE IF ( ldf < m ) then
664 info = -11
665 ELSE IF ( ldx < minmn ) then
666 info = -13
667 ELSE IF ( ldy < minmn ) then
668 info = -15
669 ELSE IF ( .NOT. (( nrnk == -2).OR.(nrnk == -1).OR. &
670 ((nrnk >= 1).AND.(nrnk <=n ))) ) then
671 info = -16
672 ELSE IF ( ( tol < zero ) .OR. ( tol >= one ) ) then
673 info = -17
674 ELSE IF ( ldz < m ) then
675 info = -21
676 ELSE IF ( (wntref.OR.wntex ).AND.( ldb < minmn ) ) then
677 info = -24
678 ELSE IF ( ldv < n-1 ) then
679 info = -26
680 ELSE IF ( lds < n-1 ) then
681 info = -28
682 END IF
683!
684 IF ( wntvec .OR. wntvcf .OR. wntvcq ) then
685 jobvl = 'V'
686 else
687 jobvl = 'N'
688 END IF
689 IF ( info == 0 ) THEN
690 ! Compute the minimal and the optimal workspace
691 ! requirements. Simulate running the code and
692 ! determine minimal and optimal sizes of the
693 ! workspace at any moment of the run.
694 IF ( ( n == 0 ) .OR. ( n == 1 ) ) then
695 ! All output except K is void. INFO=1 signals
696 ! the void input. In case of a workspace query,
697 ! the minimal workspace lengths are returned.
698 IF ( lquery ) THEN
699 iwork(1) = 1
700 work(1) = 2
701 work(2) = 2
702 ELSE
703 k = 0
704 END IF
705 info = 1
706 return
707 END IF
708
709 mlrwrk = 2
710 mlwork = 2
711 olwork = 2
712 iminwr = 1
713 mlwqr = max(1,n) ! Minimal workspace length for CGEQRF.
714 mlwork = max(mlwork,minmn + mlwqr)
715
716 IF ( lquery ) THEN
717 CALL cgeqrf( m, n, f, ldf, zwork, zwork, -1, &
718 info1 )
719 olwqr = int(zwork(1))
720 olwork = max(olwork,minmn + olwqr)
721 END IF
722 CALL cgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn,&
723 n-1, x, ldx, y, ldy, nrnk, tol, k, &
724 eigs, z, ldz, res, b, ldb, v, ldv, &
725 s, lds, zwork, lzwork, work, -1, iwork,&
726 liwork, info1 )
727 mlwdmd = int(zwork(1))
728 mlwork = max(mlwork, minmn + mlwdmd)
729 mlrwrk = max(mlrwrk, int(work(1)))
730 iminwr = max(iminwr, iwork(1))
731 IF ( lquery ) THEN
732 olwdmd = int(zwork(2))
733 olwork = max(olwork, minmn+olwdmd)
734 END IF
735 IF ( wntvec .OR. wntvcf ) then
736 mlwmqr = max(1,n)
737 mlwork = max(mlwork, minmn+mlwmqr)
738 IF ( lquery ) then
739 CALL cunmqr( 'L','N', m, n, minmn, f, ldf, &
740 zwork, z, ldz, zwork, -1, info1 )
741 olwmqr = int(zwork(1))
742 olwork = max(olwork, minmn+olwmqr)
743 END IF
744 END IF
745 IF ( wantq ) then
746 mlwgqr = max(1,n)
747 mlwork = max(mlwork, minmn+mlwgqr)
748 IF ( lquery ) THEN
749 CALL cungqr( m, minmn, minmn, f, ldf, zwork, &
750 zwork, -1, info1 )
751 olwgqr = int(zwork(1))
752 olwork = max(olwork, minmn+olwgqr)
753 END IF
754 END IF
755 IF ( liwork < iminwr .AND. (.NOT.lquery) ) info = -34
756 IF ( lwork < mlrwrk .AND. (.NOT.lquery) ) info = -32
757 IF ( lzwork < mlwork .AND. (.NOT.lquery) ) info = -30
758 END IF
759 IF( info /= 0 ) then
760 CALL xerbla( 'CGEDMDQ', -info )
761 return
762 ELSE IF ( lquery ) then
763! Return minimal and optimal workspace sizes
764 iwork(1) = iminwr
765 zwork(1) = mlwork
766 zwork(2) = olwork
767 work(1) = mlrwrk
768 work(2) = mlrwrk
769 return
770 END IF
771!.....
772! Initial QR factorization that is used to represent the
773! snapshots as elements of lower dimensional subspace.
774! For large scale computation with M >>N , at this place
775! one can use an out of core QRF.
776!
777 CALL cgeqrf( m, n, f, ldf, zwork, &
778 zwork(minmn+1), lzwork-minmn, info1 )
779!
780! Define X and Y as the snapshots representations in the
781! orthogonal basis computed in the QR factorization.
782! X corresponds to the leading N-1 and Y to the trailing
783! N-1 snapshots.
784 CALL claset( 'L', minmn, n-1, zzero, zzero, x, ldx )
785 CALL clacpy( 'U', minmn, n-1, f, ldf, x, ldx )
786 CALL clacpy( 'A', minmn, n-1, f(1,2), ldf, y, ldy )
787 IF ( m >= 3 ) then
788 CALL claset( 'L', minmn-2, n-2, zzero, zzero, &
789 y(3,1), ldy )
790 END IF
791!
792! Compute the DMD of the projected snapshot pairs (X,Y)
793 CALL cgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn, &
794 n-1, x, ldx, y, ldy, nrnk, tol, k, &
795 eigs, z, ldz, res, b, ldb, v, ldv, &
796 s, lds, zwork(minmn+1), lzwork-minmn, &
797 work, lwork, iwork, liwork, info1 )
798 IF ( info1 == 2 .OR. info1 == 3 ) then
799 ! Return with error code. See CGEDMD for details.
800 info = info1
801 return
802 else
803 info = info1
804 END IF
805!
806! The Ritz vectors (Koopman modes) can be explicitly
807! formed or returned in factored form.
808 IF ( wntvec ) then
809 ! Compute the eigenvectors explicitly.
810 IF ( m > minmn ) CALL claset( 'A', m-minmn, k, zzero, &
811 zzero, z(minmn+1,1), ldz )
812 CALL cunmqr( 'L','N', m, k, minmn, f, ldf, zwork, z, &
813 ldz, zwork(minmn+1), lzwork-minmn, info1 )
814 ELSE IF ( wntvcf ) THEN
815 ! Return the Ritz vectors (eigenvectors) in factored
816 ! form Z*V, where Z contains orthonormal matrix (the
817 ! product of Q from the initial QR factorization and
818 ! the SVD/POD_basis returned by CGEDMD in X) and the
819 ! second factor (the eigenvectors of the Rayleigh
820 ! quotient) is in the array V, as returned by CGEDMD.
821 CALL clacpy( 'A', n, k, x, ldx, z, ldz )
822 IF ( m > n ) CALL claset( 'A', m-n, k, zzero, zzero, &
823 z(n+1,1), ldz )
824 CALL cunmqr( 'L','N', m, k, minmn, f, ldf, zwork, z, &
825 ldz, zwork(minmn+1), lzwork-minmn, info1 )
826 END IF
827!
828! Some optional output variables:
829!
830! The upper triangular factor R in the initial QR
831! factorization is optionally returned in the array Y.
832! This is useful if this call to CGEDMDQ is to be
833
834! followed by a streaming DMD that is implemented in a
835! QR compressed form.
836 IF ( wnttrf ) THEN ! Return the upper triangular R in Y
837 CALL claset( 'A', minmn, n, zzero, zzero, y, ldy )
838 CALL clacpy( 'U', minmn, n, f, ldf, y, ldy )
839 END IF
840!
841! The orthonormal/unitary factor Q in the initial QR
842! factorization is optionally returned in the array F.
843! Same as with the triangular factor above, this is
844! useful in a streaming DMD.
845 IF ( wantq ) THEN ! Q overwrites F
846 CALL cungqr( m, minmn, minmn, f, ldf, zwork, &
847 zwork(minmn+1), lzwork-minmn, info1 )
848 END IF
849!
850 return
851!
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgedmd(jobs, jobz, jobr, jobf, whtsvd, m, n, x, ldx, y, ldy, nrnk, tol, k, eigs, z, ldz, res, b, ldb, w, ldw, s, lds, zwork, lzwork, rwork, lrwork, iwork, liwork, info)
CGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
Definition cgedmd.f90:501
subroutine cgeqrf(m, n, a, lda, tau, work, lwork, info)
CGEQRF
Definition cgeqrf.f:146
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cungqr(m, n, k, a, lda, tau, work, lwork, info)
CUNGQR
Definition cungqr.f:128
subroutine cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMQR
Definition cunmqr.f:168
Here is the call graph for this function: