LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zunmbr.f
Go to the documentation of this file.
1*> \brief \b ZUNMBR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZUNMBR + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmbr.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmbr.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmbr.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
20* LDC, WORK, LWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER SIDE, TRANS, VECT
24* INTEGER INFO, K, LDA, LDC, LWORK, M, N
25* ..
26* .. Array Arguments ..
27* COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
37*> with
38*> SIDE = 'L' SIDE = 'R'
39*> TRANS = 'N': Q * C C * Q
40*> TRANS = 'C': Q**H * C C * Q**H
41*>
42*> If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
43*> with
44*> SIDE = 'L' SIDE = 'R'
45*> TRANS = 'N': P * C C * P
46*> TRANS = 'C': P**H * C C * P**H
47*>
48*> Here Q and P**H are the unitary matrices determined by ZGEBRD when
49*> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
50*> and P**H are defined as products of elementary reflectors H(i) and
51*> G(i) respectively.
52*>
53*> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
54*> order of the unitary matrix Q or P**H that is applied.
55*>
56*> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
57*> if nq >= k, Q = H(1) H(2) . . . H(k);
58*> if nq < k, Q = H(1) H(2) . . . H(nq-1).
59*>
60*> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
61*> if k < nq, P = G(1) G(2) . . . G(k);
62*> if k >= nq, P = G(1) G(2) . . . G(nq-1).
63*> \endverbatim
64*
65* Arguments:
66* ==========
67*
68*> \param[in] VECT
69*> \verbatim
70*> VECT is CHARACTER*1
71*> = 'Q': apply Q or Q**H;
72*> = 'P': apply P or P**H.
73*> \endverbatim
74*>
75*> \param[in] SIDE
76*> \verbatim
77*> SIDE is CHARACTER*1
78*> = 'L': apply Q, Q**H, P or P**H from the Left;
79*> = 'R': apply Q, Q**H, P or P**H from the Right.
80*> \endverbatim
81*>
82*> \param[in] TRANS
83*> \verbatim
84*> TRANS is CHARACTER*1
85*> = 'N': No transpose, apply Q or P;
86*> = 'C': Conjugate transpose, apply Q**H or P**H.
87*> \endverbatim
88*>
89*> \param[in] M
90*> \verbatim
91*> M is INTEGER
92*> The number of rows of the matrix C. M >= 0.
93*> \endverbatim
94*>
95*> \param[in] N
96*> \verbatim
97*> N is INTEGER
98*> The number of columns of the matrix C. N >= 0.
99*> \endverbatim
100*>
101*> \param[in] K
102*> \verbatim
103*> K is INTEGER
104*> If VECT = 'Q', the number of columns in the original
105*> matrix reduced by ZGEBRD.
106*> If VECT = 'P', the number of rows in the original
107*> matrix reduced by ZGEBRD.
108*> K >= 0.
109*> \endverbatim
110*>
111*> \param[in] A
112*> \verbatim
113*> A is COMPLEX*16 array, dimension
114*> (LDA,min(nq,K)) if VECT = 'Q'
115*> (LDA,nq) if VECT = 'P'
116*> The vectors which define the elementary reflectors H(i) and
117*> G(i), whose products determine the matrices Q and P, as
118*> returned by ZGEBRD.
119*> \endverbatim
120*>
121*> \param[in] LDA
122*> \verbatim
123*> LDA is INTEGER
124*> The leading dimension of the array A.
125*> If VECT = 'Q', LDA >= max(1,nq);
126*> if VECT = 'P', LDA >= max(1,min(nq,K)).
127*> \endverbatim
128*>
129*> \param[in] TAU
130*> \verbatim
131*> TAU is COMPLEX*16 array, dimension (min(nq,K))
132*> TAU(i) must contain the scalar factor of the elementary
133*> reflector H(i) or G(i) which determines Q or P, as returned
134*> by ZGEBRD in the array argument TAUQ or TAUP.
135*> \endverbatim
136*>
137*> \param[in,out] C
138*> \verbatim
139*> C is COMPLEX*16 array, dimension (LDC,N)
140*> On entry, the M-by-N matrix C.
141*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
142*> or P*C or P**H*C or C*P or C*P**H.
143*> \endverbatim
144*>
145*> \param[in] LDC
146*> \verbatim
147*> LDC is INTEGER
148*> The leading dimension of the array C. LDC >= max(1,M).
149*> \endverbatim
150*>
151*> \param[out] WORK
152*> \verbatim
153*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
154*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
155*> \endverbatim
156*>
157*> \param[in] LWORK
158*> \verbatim
159*> LWORK is INTEGER
160*> The dimension of the array WORK.
161*> If SIDE = 'L', LWORK >= max(1,N);
162*> if SIDE = 'R', LWORK >= max(1,M);
163*> if N = 0 or M = 0, LWORK >= 1.
164*> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
165*> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
166*> optimal blocksize. (NB = 0 if M = 0 or N = 0.)
167*>
168*> If LWORK = -1, then a workspace query is assumed; the routine
169*> only calculates the optimal size of the WORK array, returns
170*> this value as the first entry of the WORK array, and no error
171*> message related to LWORK is issued by XERBLA.
172*> \endverbatim
173*>
174*> \param[out] INFO
175*> \verbatim
176*> INFO is INTEGER
177*> = 0: successful exit
178*> < 0: if INFO = -i, the i-th argument had an illegal value
179*> \endverbatim
180*
181* Authors:
182* ========
183*
184*> \author Univ. of Tennessee
185*> \author Univ. of California Berkeley
186*> \author Univ. of Colorado Denver
187*> \author NAG Ltd.
188*
189*> \ingroup unmbr
190*
191* =====================================================================
192 SUBROUTINE zunmbr( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
193 $ LDC, WORK, LWORK, INFO )
194*
195* -- LAPACK computational routine --
196* -- LAPACK is a software package provided by Univ. of Tennessee, --
197* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
198*
199* .. Scalar Arguments ..
200 CHARACTER SIDE, TRANS, VECT
201 INTEGER INFO, K, LDA, LDC, LWORK, M, N
202* ..
203* .. Array Arguments ..
204 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
205* ..
206*
207* =====================================================================
208*
209* .. Local Scalars ..
210 LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
211 CHARACTER TRANST
212 INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
213* ..
214* .. External Functions ..
215 LOGICAL LSAME
216 INTEGER ILAENV
217 EXTERNAL lsame, ilaenv
218* ..
219* .. External Subroutines ..
220 EXTERNAL xerbla, zunmlq, zunmqr
221* ..
222* .. Intrinsic Functions ..
223 INTRINSIC max, min
224* ..
225* .. Executable Statements ..
226*
227* Test the input arguments
228*
229 info = 0
230 applyq = lsame( vect, 'Q' )
231 left = lsame( side, 'L' )
232 notran = lsame( trans, 'N' )
233 lquery = ( lwork.EQ.-1 )
234*
235* NQ is the order of Q or P and NW is the minimum dimension of WORK
236*
237 IF( left ) THEN
238 nq = m
239 nw = max( 1, n )
240 ELSE
241 nq = n
242 nw = max( 1, m )
243 END IF
244 IF( .NOT.applyq .AND. .NOT.lsame( vect, 'P' ) ) THEN
245 info = -1
246 ELSE IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
247 info = -2
248 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
249 info = -3
250 ELSE IF( m.LT.0 ) THEN
251 info = -4
252 ELSE IF( n.LT.0 ) THEN
253 info = -5
254 ELSE IF( k.LT.0 ) THEN
255 info = -6
256 ELSE IF( ( applyq .AND. lda.LT.max( 1, nq ) ) .OR.
257 $ ( .NOT.applyq .AND. lda.LT.max( 1, min( nq, k ) ) ) )
258 $ THEN
259 info = -8
260 ELSE IF( ldc.LT.max( 1, m ) ) THEN
261 info = -11
262 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
263 info = -13
264 END IF
265*
266 IF( info.EQ.0 ) THEN
267 IF( m.GT.0 .AND. n.GT.0 ) THEN
268 IF( applyq ) THEN
269 IF( left ) THEN
270 nb = ilaenv( 1, 'ZUNMQR', side // trans, m-1, n,
271 $ m-1,
272 $ -1 )
273 ELSE
274 nb = ilaenv( 1, 'ZUNMQR', side // trans, m, n-1,
275 $ n-1,
276 $ -1 )
277 END IF
278 ELSE
279 IF( left ) THEN
280 nb = ilaenv( 1, 'ZUNMLQ', side // trans, m-1, n,
281 $ m-1,
282 $ -1 )
283 ELSE
284 nb = ilaenv( 1, 'ZUNMLQ', side // trans, m, n-1,
285 $ n-1,
286 $ -1 )
287 END IF
288 END IF
289 lwkopt = nw*nb
290 ELSE
291 lwkopt = 1
292 END IF
293 work( 1 ) = lwkopt
294 END IF
295*
296 IF( info.NE.0 ) THEN
297 CALL xerbla( 'ZUNMBR', -info )
298 RETURN
299 ELSE IF( lquery ) THEN
300 RETURN
301 END IF
302*
303* Quick return if possible
304*
305 IF( m.EQ.0 .OR. n.EQ.0 )
306 $ RETURN
307*
308 IF( applyq ) THEN
309*
310* Apply Q
311*
312 IF( nq.GE.k ) THEN
313*
314* Q was determined by a call to ZGEBRD with nq >= k
315*
316 CALL zunmqr( side, trans, m, n, k, a, lda, tau, c, ldc,
317 $ work, lwork, iinfo )
318 ELSE IF( nq.GT.1 ) THEN
319*
320* Q was determined by a call to ZGEBRD with nq < k
321*
322 IF( left ) THEN
323 mi = m - 1
324 ni = n
325 i1 = 2
326 i2 = 1
327 ELSE
328 mi = m
329 ni = n - 1
330 i1 = 1
331 i2 = 2
332 END IF
333 CALL zunmqr( side, trans, mi, ni, nq-1, a( 2, 1 ), lda,
334 $ tau,
335 $ c( i1, i2 ), ldc, work, lwork, iinfo )
336 END IF
337 ELSE
338*
339* Apply P
340*
341 IF( notran ) THEN
342 transt = 'C'
343 ELSE
344 transt = 'N'
345 END IF
346 IF( nq.GT.k ) THEN
347*
348* P was determined by a call to ZGEBRD with nq > k
349*
350 CALL zunmlq( side, transt, m, n, k, a, lda, tau, c, ldc,
351 $ work, lwork, iinfo )
352 ELSE IF( nq.GT.1 ) THEN
353*
354* P was determined by a call to ZGEBRD with nq <= k
355*
356 IF( left ) THEN
357 mi = m - 1
358 ni = n
359 i1 = 2
360 i2 = 1
361 ELSE
362 mi = m
363 ni = n - 1
364 i1 = 1
365 i2 = 2
366 END IF
367 CALL zunmlq( side, transt, mi, ni, nq-1, a( 1, 2 ), lda,
368 $ tau, c( i1, i2 ), ldc, work, lwork, iinfo )
369 END IF
370 END IF
371 work( 1 ) = lwkopt
372 RETURN
373*
374* End of ZUNMBR
375*
376 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMBR
Definition zunmbr.f:194
subroutine zunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMLQ
Definition zunmlq.f:165
subroutine zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMQR
Definition zunmqr.f:165