LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zunmlq()

subroutine zunmlq ( character side,
character trans,
integer m,
integer n,
integer k,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( ldc, * ) c,
integer ldc,
complex*16, dimension( * ) work,
integer lwork,
integer info )

ZUNMLQ

Download ZUNMLQ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZUNMLQ overwrites the general complex M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N !> if SIDE = 'R'. !>
Parameters
[in]SIDE
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left; !> = 'R': apply Q or Q**H from the Right. !>
[in]TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'C': Conjugate transpose, apply Q**H. !>
[in]M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
[in]K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
[in]A
!> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGELQF in the first k rows of its array argument A. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !>
[in]TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGELQF. !>
[in,out]C
!> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !>
[in]LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
[in]LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 163 of file zunmlq.f.

165*
166* -- LAPACK computational routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 CHARACTER SIDE, TRANS
172 INTEGER INFO, K, LDA, LDC, LWORK, M, N
173* ..
174* .. Array Arguments ..
175 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 INTEGER NBMAX, LDT, TSIZE
182 parameter( nbmax = 64, ldt = nbmax+1,
183 $ tsize = ldt*nbmax )
184* ..
185* .. Local Scalars ..
186 LOGICAL LEFT, LQUERY, NOTRAN
187 CHARACTER TRANST
188 INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
189 $ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
190* ..
191* .. External Functions ..
192 LOGICAL LSAME
193 INTEGER ILAENV
194 EXTERNAL lsame, ilaenv
195* ..
196* .. External Subroutines ..
197 EXTERNAL xerbla, zlarfb, zlarft, zunml2
198* ..
199* .. Intrinsic Functions ..
200 INTRINSIC max, min
201* ..
202* .. Executable Statements ..
203*
204* Test the input arguments
205*
206 info = 0
207 left = lsame( side, 'L' )
208 notran = lsame( trans, 'N' )
209 lquery = ( lwork.EQ.-1 )
210*
211* NQ is the order of Q and NW is the minimum dimension of WORK
212*
213 IF( left ) THEN
214 nq = m
215 nw = max( 1, n )
216 ELSE
217 nq = n
218 nw = max( 1, m )
219 END IF
220 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
221 info = -1
222 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
223 info = -2
224 ELSE IF( m.LT.0 ) THEN
225 info = -3
226 ELSE IF( n.LT.0 ) THEN
227 info = -4
228 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
229 info = -5
230 ELSE IF( lda.LT.max( 1, k ) ) THEN
231 info = -7
232 ELSE IF( ldc.LT.max( 1, m ) ) THEN
233 info = -10
234 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
235 info = -12
236 END IF
237*
238 IF( info.EQ.0 ) THEN
239*
240* Compute the workspace requirements
241*
242 nb = min( nbmax, ilaenv( 1, 'ZUNMLQ', side // trans, m, n,
243 $ k,
244 $ -1 ) )
245 lwkopt = nw*nb + tsize
246 work( 1 ) = lwkopt
247 END IF
248*
249 IF( info.NE.0 ) THEN
250 CALL xerbla( 'ZUNMLQ', -info )
251 RETURN
252 ELSE IF( lquery ) THEN
253 RETURN
254 END IF
255*
256* Quick return if possible
257*
258 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) THEN
259 work( 1 ) = 1
260 RETURN
261 END IF
262*
263 nbmin = 2
264 ldwork = nw
265 IF( nb.GT.1 .AND. nb.LT.k ) THEN
266 IF( lwork.LT.lwkopt ) THEN
267 nb = (lwork-tsize) / ldwork
268 nbmin = max( 2, ilaenv( 2, 'ZUNMLQ', side // trans, m, n,
269 $ k,
270 $ -1 ) )
271 END IF
272 END IF
273*
274 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
275*
276* Use unblocked code
277*
278 CALL zunml2( side, trans, m, n, k, a, lda, tau, c, ldc,
279 $ work,
280 $ iinfo )
281 ELSE
282*
283* Use blocked code
284*
285 iwt = 1 + nw*nb
286 IF( ( left .AND. notran ) .OR.
287 $ ( .NOT.left .AND. .NOT.notran ) ) THEN
288 i1 = 1
289 i2 = k
290 i3 = nb
291 ELSE
292 i1 = ( ( k-1 ) / nb )*nb + 1
293 i2 = 1
294 i3 = -nb
295 END IF
296*
297 IF( left ) THEN
298 ni = n
299 jc = 1
300 ELSE
301 mi = m
302 ic = 1
303 END IF
304*
305 IF( notran ) THEN
306 transt = 'C'
307 ELSE
308 transt = 'N'
309 END IF
310*
311 DO 10 i = i1, i2, i3
312 ib = min( nb, k-i+1 )
313*
314* Form the triangular factor of the block reflector
315* H = H(i) H(i+1) . . . H(i+ib-1)
316*
317 CALL zlarft( 'Forward', 'Rowwise', nq-i+1, ib, a( i, i ),
318 $ lda, tau( i ), work( iwt ), ldt )
319 IF( left ) THEN
320*
321* H or H**H is applied to C(i:m,1:n)
322*
323 mi = m - i + 1
324 ic = i
325 ELSE
326*
327* H or H**H is applied to C(1:m,i:n)
328*
329 ni = n - i + 1
330 jc = i
331 END IF
332*
333* Apply H or H**H
334*
335 CALL zlarfb( side, transt, 'Forward', 'Rowwise', mi, ni,
336 $ ib,
337 $ a( i, i ), lda, work( iwt ), ldt,
338 $ c( ic, jc ), ldc, work, ldwork )
339 10 CONTINUE
340 END IF
341 work( 1 ) = lwkopt
342 RETURN
343*
344* End of ZUNMLQ
345*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine zlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition zlarfb.f:195
recursive subroutine zlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition zlarft.f:162
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zunml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
ZUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf...
Definition zunml2.f:157
Here is the call graph for this function:
Here is the caller graph for this function: