LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zunml2()

subroutine zunml2 ( character side,
character trans,
integer m,
integer n,
integer k,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( ldc, * ) c,
integer ldc,
complex*16, dimension( * ) work,
integer info )

ZUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm).

Download ZUNML2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZUNML2 overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(k)**H . . . H(2)**H H(1)**H !> !> as returned by ZGELQF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
[in]SIDE
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !>
[in]TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !>
[in]M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
[in]K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
[in]A
!> A is COMPLEX*16 array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGELQF in the first k rows of its array argument A. !> A is modified by the routine but restored on exit. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !>
[in]TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGELQF. !>
[in,out]C
!> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !>
[in]LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 155 of file zunml2.f.

157*
158* -- LAPACK computational routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 CHARACTER SIDE, TRANS
164 INTEGER INFO, K, LDA, LDC, M, N
165* ..
166* .. Array Arguments ..
167 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
168* ..
169*
170* =====================================================================
171*
172* .. Parameters ..
173 COMPLEX*16 ONE
174 parameter( one = ( 1.0d+0, 0.0d+0 ) )
175* ..
176* .. Local Scalars ..
177 LOGICAL LEFT, NOTRAN
178 INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ
179 COMPLEX*16 TAUI
180* ..
181* .. External Functions ..
182 LOGICAL LSAME
183 EXTERNAL lsame
184* ..
185* .. External Subroutines ..
186 EXTERNAL xerbla, zlacgv, zlarf1f
187* ..
188* .. Intrinsic Functions ..
189 INTRINSIC dconjg, max
190* ..
191* .. Executable Statements ..
192*
193* Test the input arguments
194*
195 info = 0
196 left = lsame( side, 'L' )
197 notran = lsame( trans, 'N' )
198*
199* NQ is the order of Q
200*
201 IF( left ) THEN
202 nq = m
203 ELSE
204 nq = n
205 END IF
206 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
207 info = -1
208 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
209 info = -2
210 ELSE IF( m.LT.0 ) THEN
211 info = -3
212 ELSE IF( n.LT.0 ) THEN
213 info = -4
214 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
215 info = -5
216 ELSE IF( lda.LT.max( 1, k ) ) THEN
217 info = -7
218 ELSE IF( ldc.LT.max( 1, m ) ) THEN
219 info = -10
220 END IF
221 IF( info.NE.0 ) THEN
222 CALL xerbla( 'ZUNML2', -info )
223 RETURN
224 END IF
225*
226* Quick return if possible
227*
228 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
229 $ RETURN
230*
231 IF( ( left .AND. notran .OR. .NOT.left .AND. .NOT.notran ) ) THEN
232 i1 = 1
233 i2 = k
234 i3 = 1
235 ELSE
236 i1 = k
237 i2 = 1
238 i3 = -1
239 END IF
240*
241 IF( left ) THEN
242 ni = n
243 jc = 1
244 ELSE
245 mi = m
246 ic = 1
247 END IF
248*
249 DO 10 i = i1, i2, i3
250 IF( left ) THEN
251*
252* H(i) or H(i)**H is applied to C(i:m,1:n)
253*
254 mi = m - i + 1
255 ic = i
256 ELSE
257*
258* H(i) or H(i)**H is applied to C(1:m,i:n)
259*
260 ni = n - i + 1
261 jc = i
262 END IF
263*
264* Apply H(i) or H(i)**H
265*
266 IF( notran ) THEN
267 taui = dconjg( tau( i ) )
268 ELSE
269 taui = tau( i )
270 END IF
271 IF( i.LT.nq )
272 $ CALL zlacgv( nq-i, a( i, i+1 ), lda )
273 CALL zlarf1f( side, mi, ni, a( i, i ), lda, taui, c( ic,
274 $ jc ), ldc, work )
275 IF( i.LT.nq )
276 $ CALL zlacgv( nq-i, a( i, i+1 ), lda )
277 10 CONTINUE
278 RETURN
279*
280* End of ZUNML2
281*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
subroutine zlarf1f(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1F applies an elementary reflector to a general rectangular
Definition zlarf1f.f:157
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: