LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine chptrd | ( | character | uplo, |
integer | n, | ||
complex, dimension( * ) | ap, | ||
real, dimension( * ) | d, | ||
real, dimension( * ) | e, | ||
complex, dimension( * ) | tau, | ||
integer | info ) |
CHPTRD
Download CHPTRD + dependencies [TGZ] [ZIP] [TXT]
!> !> CHPTRD reduces a complex Hermitian matrix A stored in packed form to !> real symmetric tridiagonal form T by a unitary similarity !> transformation: Q**H * A * Q = T. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in,out] | AP | !> AP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> On exit, if UPLO = 'U', the diagonal and first superdiagonal !> of A are overwritten by the corresponding elements of the !> tridiagonal matrix T, and the elements above the first !> superdiagonal, with the array TAU, represent the unitary !> matrix Q as a product of elementary reflectors; if UPLO !> = 'L', the diagonal and first subdiagonal of A are over- !> written by the corresponding elements of the tridiagonal !> matrix T, and the elements below the first subdiagonal, with !> the array TAU, represent the unitary matrix Q as a product !> of elementary reflectors. See Further Details. !> |
[out] | D | !> D is REAL array, dimension (N) !> The diagonal elements of the tridiagonal matrix T: !> D(i) = A(i,i). !> |
[out] | E | !> E is REAL array, dimension (N-1) !> The off-diagonal elements of the tridiagonal matrix T: !> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. !> |
[out] | TAU | !> TAU is COMPLEX array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> If UPLO = 'U', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(n-1) . . . H(2) H(1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, !> overwriting A(1:i-1,i+1), and tau is stored in TAU(i). !> !> If UPLO = 'L', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(1) H(2) . . . H(n-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, !> overwriting A(i+2:n,i), and tau is stored in TAU(i). !>
Definition at line 148 of file chptrd.f.