LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine chpr2 | ( | character | uplo, |
integer | n, | ||
complex | alpha, | ||
complex, dimension(*) | x, | ||
integer | incx, | ||
complex, dimension(*) | y, | ||
integer | incy, | ||
complex, dimension(*) | ap | ||
) |
CHPR2
CHPR2 performs the hermitian rank 2 operation A := alpha*x*y**H + conjg( alpha )*y*x**H + A, where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form.
[in] | UPLO | UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. |
[in] | N | N is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero. |
[in] | ALPHA | ALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha. |
[in] | X | X is COMPLEX array, dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. |
[in] | INCX | INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero. |
[in] | Y | Y is COMPLEX array, dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. |
[in] | INCY | INCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. |
[in,out] | AP | AP is COMPLEX array, dimension at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. |
Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Definition at line 144 of file chpr2.f.