LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sspgvx.f
Go to the documentation of this file.
1*> \brief \b SSPGVX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SSPGVX + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgvx.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgvx.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgvx.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
20* IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
21* IFAIL, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBZ, RANGE, UPLO
25* INTEGER IL, INFO, ITYPE, IU, LDZ, M, N
26* REAL ABSTOL, VL, VU
27* ..
28* .. Array Arguments ..
29* INTEGER IFAIL( * ), IWORK( * )
30* REAL AP( * ), BP( * ), W( * ), WORK( * ),
31* $ Z( LDZ, * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> SSPGVX computes selected eigenvalues, and optionally, eigenvectors
41*> of a real generalized symmetric-definite eigenproblem, of the form
42*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
43*> and B are assumed to be symmetric, stored in packed storage, and B
44*> is also positive definite. Eigenvalues and eigenvectors can be
45*> selected by specifying either a range of values or a range of indices
46*> for the desired eigenvalues.
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] ITYPE
53*> \verbatim
54*> ITYPE is INTEGER
55*> Specifies the problem type to be solved:
56*> = 1: A*x = (lambda)*B*x
57*> = 2: A*B*x = (lambda)*x
58*> = 3: B*A*x = (lambda)*x
59*> \endverbatim
60*>
61*> \param[in] JOBZ
62*> \verbatim
63*> JOBZ is CHARACTER*1
64*> = 'N': Compute eigenvalues only;
65*> = 'V': Compute eigenvalues and eigenvectors.
66*> \endverbatim
67*>
68*> \param[in] RANGE
69*> \verbatim
70*> RANGE is CHARACTER*1
71*> = 'A': all eigenvalues will be found.
72*> = 'V': all eigenvalues in the half-open interval (VL,VU]
73*> will be found.
74*> = 'I': the IL-th through IU-th eigenvalues will be found.
75*> \endverbatim
76*>
77*> \param[in] UPLO
78*> \verbatim
79*> UPLO is CHARACTER*1
80*> = 'U': Upper triangle of A and B are stored;
81*> = 'L': Lower triangle of A and B are stored.
82*> \endverbatim
83*>
84*> \param[in] N
85*> \verbatim
86*> N is INTEGER
87*> The order of the matrix pencil (A,B). N >= 0.
88*> \endverbatim
89*>
90*> \param[in,out] AP
91*> \verbatim
92*> AP is REAL array, dimension (N*(N+1)/2)
93*> On entry, the upper or lower triangle of the symmetric matrix
94*> A, packed columnwise in a linear array. The j-th column of A
95*> is stored in the array AP as follows:
96*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
97*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
98*>
99*> On exit, the contents of AP are destroyed.
100*> \endverbatim
101*>
102*> \param[in,out] BP
103*> \verbatim
104*> BP is REAL array, dimension (N*(N+1)/2)
105*> On entry, the upper or lower triangle of the symmetric matrix
106*> B, packed columnwise in a linear array. The j-th column of B
107*> is stored in the array BP as follows:
108*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
109*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
110*>
111*> On exit, the triangular factor U or L from the Cholesky
112*> factorization B = U**T*U or B = L*L**T, in the same storage
113*> format as B.
114*> \endverbatim
115*>
116*> \param[in] VL
117*> \verbatim
118*> VL is REAL
119*>
120*> If RANGE='V', the lower bound of the interval to
121*> be searched for eigenvalues. VL < VU.
122*> Not referenced if RANGE = 'A' or 'I'.
123*> \endverbatim
124*>
125*> \param[in] VU
126*> \verbatim
127*> VU is REAL
128*>
129*> If RANGE='V', the upper bound of the interval to
130*> be searched for eigenvalues. VL < VU.
131*> Not referenced if RANGE = 'A' or 'I'.
132*> \endverbatim
133*>
134*> \param[in] IL
135*> \verbatim
136*> IL is INTEGER
137*>
138*> If RANGE='I', the index of the
139*> smallest eigenvalue to be returned.
140*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
141*> Not referenced if RANGE = 'A' or 'V'.
142*> \endverbatim
143*>
144*> \param[in] IU
145*> \verbatim
146*> IU is INTEGER
147*>
148*> If RANGE='I', the index of the
149*> largest eigenvalue to be returned.
150*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
151*> Not referenced if RANGE = 'A' or 'V'.
152*> \endverbatim
153*>
154*> \param[in] ABSTOL
155*> \verbatim
156*> ABSTOL is REAL
157*> The absolute error tolerance for the eigenvalues.
158*> An approximate eigenvalue is accepted as converged
159*> when it is determined to lie in an interval [a,b]
160*> of width less than or equal to
161*>
162*> ABSTOL + EPS * max( |a|,|b| ) ,
163*>
164*> where EPS is the machine precision. If ABSTOL is less than
165*> or equal to zero, then EPS*|T| will be used in its place,
166*> where |T| is the 1-norm of the tridiagonal matrix obtained
167*> by reducing A to tridiagonal form.
168*>
169*> Eigenvalues will be computed most accurately when ABSTOL is
170*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
171*> If this routine returns with INFO>0, indicating that some
172*> eigenvectors did not converge, try setting ABSTOL to
173*> 2*SLAMCH('S').
174*> \endverbatim
175*>
176*> \param[out] M
177*> \verbatim
178*> M is INTEGER
179*> The total number of eigenvalues found. 0 <= M <= N.
180*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
181*> \endverbatim
182*>
183*> \param[out] W
184*> \verbatim
185*> W is REAL array, dimension (N)
186*> On normal exit, the first M elements contain the selected
187*> eigenvalues in ascending order.
188*> \endverbatim
189*>
190*> \param[out] Z
191*> \verbatim
192*> Z is REAL array, dimension (LDZ, max(1,M))
193*> If JOBZ = 'N', then Z is not referenced.
194*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
195*> contain the orthonormal eigenvectors of the matrix A
196*> corresponding to the selected eigenvalues, with the i-th
197*> column of Z holding the eigenvector associated with W(i).
198*> The eigenvectors are normalized as follows:
199*> if ITYPE = 1 or 2, Z**T*B*Z = I;
200*> if ITYPE = 3, Z**T*inv(B)*Z = I.
201*>
202*> If an eigenvector fails to converge, then that column of Z
203*> contains the latest approximation to the eigenvector, and the
204*> index of the eigenvector is returned in IFAIL.
205*> Note: the user must ensure that at least max(1,M) columns are
206*> supplied in the array Z; if RANGE = 'V', the exact value of M
207*> is not known in advance and an upper bound must be used.
208*> \endverbatim
209*>
210*> \param[in] LDZ
211*> \verbatim
212*> LDZ is INTEGER
213*> The leading dimension of the array Z. LDZ >= 1, and if
214*> JOBZ = 'V', LDZ >= max(1,N).
215*> \endverbatim
216*>
217*> \param[out] WORK
218*> \verbatim
219*> WORK is REAL array, dimension (8*N)
220*> \endverbatim
221*>
222*> \param[out] IWORK
223*> \verbatim
224*> IWORK is INTEGER array, dimension (5*N)
225*> \endverbatim
226*>
227*> \param[out] IFAIL
228*> \verbatim
229*> IFAIL is INTEGER array, dimension (N)
230*> If JOBZ = 'V', then if INFO = 0, the first M elements of
231*> IFAIL are zero. If INFO > 0, then IFAIL contains the
232*> indices of the eigenvectors that failed to converge.
233*> If JOBZ = 'N', then IFAIL is not referenced.
234*> \endverbatim
235*>
236*> \param[out] INFO
237*> \verbatim
238*> INFO is INTEGER
239*> = 0: successful exit
240*> < 0: if INFO = -i, the i-th argument had an illegal value
241*> > 0: SPPTRF or SSPEVX returned an error code:
242*> <= N: if INFO = i, SSPEVX failed to converge;
243*> i eigenvectors failed to converge. Their indices
244*> are stored in array IFAIL.
245*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
246*> principal minor of order i of B is not positive.
247*> The factorization of B could not be completed and
248*> no eigenvalues or eigenvectors were computed.
249*> \endverbatim
250*
251* Authors:
252* ========
253*
254*> \author Univ. of Tennessee
255*> \author Univ. of California Berkeley
256*> \author Univ. of Colorado Denver
257*> \author NAG Ltd.
258*
259*> \ingroup hpgvx
260*
261*> \par Contributors:
262* ==================
263*>
264*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
265*
266* =====================================================================
267 SUBROUTINE sspgvx( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
268 $ IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
269 $ IFAIL, INFO )
270*
271* -- LAPACK driver routine --
272* -- LAPACK is a software package provided by Univ. of Tennessee, --
273* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
274*
275* .. Scalar Arguments ..
276 CHARACTER JOBZ, RANGE, UPLO
277 INTEGER IL, INFO, ITYPE, IU, LDZ, M, N
278 REAL ABSTOL, VL, VU
279* ..
280* .. Array Arguments ..
281 INTEGER IFAIL( * ), IWORK( * )
282 REAL AP( * ), BP( * ), W( * ), WORK( * ),
283 $ z( ldz, * )
284* ..
285*
286* =====================================================================
287*
288* .. Local Scalars ..
289 LOGICAL ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
290 CHARACTER TRANS
291 INTEGER J
292* ..
293* .. External Functions ..
294 LOGICAL LSAME
295 EXTERNAL LSAME
296* ..
297* .. External Subroutines ..
298 EXTERNAL spptrf, sspevx, sspgst, stpmv, stpsv,
299 $ xerbla
300* ..
301* .. Intrinsic Functions ..
302 INTRINSIC min
303* ..
304* .. Executable Statements ..
305*
306* Test the input parameters.
307*
308 upper = lsame( uplo, 'U' )
309 wantz = lsame( jobz, 'V' )
310 alleig = lsame( range, 'A' )
311 valeig = lsame( range, 'V' )
312 indeig = lsame( range, 'I' )
313*
314 info = 0
315 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
316 info = -1
317 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
318 info = -2
319 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
320 info = -3
321 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
322 info = -4
323 ELSE IF( n.LT.0 ) THEN
324 info = -5
325 ELSE
326 IF( valeig ) THEN
327 IF( n.GT.0 .AND. vu.LE.vl ) THEN
328 info = -9
329 END IF
330 ELSE IF( indeig ) THEN
331 IF( il.LT.1 ) THEN
332 info = -10
333 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
334 info = -11
335 END IF
336 END IF
337 END IF
338 IF( info.EQ.0 ) THEN
339 IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
340 info = -16
341 END IF
342 END IF
343*
344 IF( info.NE.0 ) THEN
345 CALL xerbla( 'SSPGVX', -info )
346 RETURN
347 END IF
348*
349* Quick return if possible
350*
351 m = 0
352 IF( n.EQ.0 )
353 $ RETURN
354*
355* Form a Cholesky factorization of B.
356*
357 CALL spptrf( uplo, n, bp, info )
358 IF( info.NE.0 ) THEN
359 info = n + info
360 RETURN
361 END IF
362*
363* Transform problem to standard eigenvalue problem and solve.
364*
365 CALL sspgst( itype, uplo, n, ap, bp, info )
366 CALL sspevx( jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
367 $ m,
368 $ w, z, ldz, work, iwork, ifail, info )
369*
370 IF( wantz ) THEN
371*
372* Backtransform eigenvectors to the original problem.
373*
374 IF( info.GT.0 )
375 $ m = info - 1
376 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
377*
378* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
379* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
380*
381 IF( upper ) THEN
382 trans = 'N'
383 ELSE
384 trans = 'T'
385 END IF
386*
387 DO 10 j = 1, m
388 CALL stpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
389 $ 1 )
390 10 CONTINUE
391*
392 ELSE IF( itype.EQ.3 ) THEN
393*
394* For B*A*x=(lambda)*x;
395* backtransform eigenvectors: x = L*y or U**T*y
396*
397 IF( upper ) THEN
398 trans = 'T'
399 ELSE
400 trans = 'N'
401 END IF
402*
403 DO 20 j = 1, m
404 CALL stpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
405 $ 1 )
406 20 CONTINUE
407 END IF
408 END IF
409*
410 RETURN
411*
412* End of SSPGVX
413*
414 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition sspevx.f:232
subroutine sspgst(itype, uplo, n, ap, bp, info)
SSPGST
Definition sspgst.f:111
subroutine sspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
SSPGVX
Definition sspgvx.f:270
subroutine spptrf(uplo, n, ap, info)
SPPTRF
Definition spptrf.f:117
subroutine stpmv(uplo, trans, diag, n, ap, x, incx)
STPMV
Definition stpmv.f:142
subroutine stpsv(uplo, trans, diag, n, ap, x, incx)
STPSV
Definition stpsv.f:144