123 DOUBLE PRECISION FUNCTION zlangb( NORM, N, KL, KU, AB, LDAB,
132 INTEGER kl, ku, ldab, n
135 DOUBLE PRECISION work( * )
136 COMPLEX*16 ab( ldab, * )
142 DOUBLE PRECISION one, zero
143 parameter( one = 1.0d+0, zero = 0.0d+0 )
147 DOUBLE PRECISION scale, sum,
VALUE, temp
157 INTRINSIC abs, max, min, sqrt
163 ELSE IF(
lsame( norm,
'M' ) )
THEN
169 DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
170 temp = abs( ab( i, j ) )
171 IF(
VALUE.LT.temp .OR.
disnan( temp ) )
VALUE = temp
174 ELSE IF( (
lsame( norm,
'O' ) ) .OR. ( norm.EQ.
'1' ) )
THEN
181 DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
182 sum = sum + abs( ab( i, j ) )
184 IF(
VALUE.LT.sum .OR.
disnan( sum ) )
VALUE = sum
186 ELSE IF(
lsame( norm,
'I' ) )
THEN
195 DO 60 i = max( 1, j-ku ), min( n, j+kl )
196 work( i ) = work( i ) + abs( ab( k+i, j ) )
202 IF(
VALUE.LT.temp .OR.
disnan( temp ) )
VALUE = temp
204 ELSE IF( (
lsame( norm,
'F' ) ) .OR. (
lsame( norm,
'E' ) ) )
THEN
213 CALL zlassq( min( n, j+kl )-l+1, ab( k, j ), 1, scale, sum )
215 VALUE = scale*sqrt( sum )
logical function disnan(din)
DISNAN tests input for NaN.
double precision function zlangb(norm, n, kl, ku, ab, ldab, work)
ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
logical function lsame(ca, cb)
LSAME