LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlangb()

double precision function zlangb ( character norm,
integer n,
integer kl,
integer ku,
complex*16, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( * ) work )

ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

Download ZLANGB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZLANGB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
!> 
Returns
ZLANGB
!>
!>    ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in ZLANGB as described
!>          above.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, ZLANGB is
!>          set to zero.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of sub-diagonals of the matrix A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of super-diagonals of the matrix A.  KU >= 0.
!> 
[in]AB
!>          AB is COMPLEX*16 array, dimension (LDAB,N)
!>          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
!>          column of A is stored in the j-th column of the array AB as
!>          follows:
!>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
!>          referenced.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 121 of file zlangb.f.

123*
124* -- LAPACK auxiliary routine --
125* -- LAPACK is a software package provided by Univ. of Tennessee, --
126* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
127*
128* .. Scalar Arguments ..
129 CHARACTER NORM
130 INTEGER KL, KU, LDAB, N
131* ..
132* .. Array Arguments ..
133 DOUBLE PRECISION WORK( * )
134 COMPLEX*16 AB( LDAB, * )
135* ..
136*
137* =====================================================================
138*
139* .. Parameters ..
140 DOUBLE PRECISION ONE, ZERO
141 parameter( one = 1.0d+0, zero = 0.0d+0 )
142* ..
143* .. Local Scalars ..
144 INTEGER I, J, K, L
145 DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
146* ..
147* .. External Functions ..
148 LOGICAL LSAME, DISNAN
149 EXTERNAL lsame, disnan
150* ..
151* .. External Subroutines ..
152 EXTERNAL zlassq
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC abs, max, min, sqrt
156* ..
157* .. Executable Statements ..
158*
159 IF( n.EQ.0 ) THEN
160 VALUE = zero
161 ELSE IF( lsame( norm, 'M' ) ) THEN
162*
163* Find max(abs(A(i,j))).
164*
165 VALUE = zero
166 DO 20 j = 1, n
167 DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
168 temp = abs( ab( i, j ) )
169 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
170 10 CONTINUE
171 20 CONTINUE
172 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
173*
174* Find norm1(A).
175*
176 VALUE = zero
177 DO 40 j = 1, n
178 sum = zero
179 DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
180 sum = sum + abs( ab( i, j ) )
181 30 CONTINUE
182 IF( VALUE.LT.sum .OR. disnan( sum ) ) VALUE = sum
183 40 CONTINUE
184 ELSE IF( lsame( norm, 'I' ) ) THEN
185*
186* Find normI(A).
187*
188 DO 50 i = 1, n
189 work( i ) = zero
190 50 CONTINUE
191 DO 70 j = 1, n
192 k = ku + 1 - j
193 DO 60 i = max( 1, j-ku ), min( n, j+kl )
194 work( i ) = work( i ) + abs( ab( k+i, j ) )
195 60 CONTINUE
196 70 CONTINUE
197 VALUE = zero
198 DO 80 i = 1, n
199 temp = work( i )
200 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
201 80 CONTINUE
202 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
203 $ ( lsame( norm, 'E' ) ) ) THEN
204*
205* Find normF(A).
206*
207 scale = zero
208 sum = one
209 DO 90 j = 1, n
210 l = max( 1, j-ku )
211 k = ku + 1 - j + l
212 CALL zlassq( min( n, j+kl )-l+1, ab( k, j ), 1, scale,
213 $ sum )
214 90 CONTINUE
215 VALUE = scale*sqrt( sum )
216 END IF
217*
218 zlangb = VALUE
219 RETURN
220*
221* End of ZLANGB
222*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlangb(norm, n, kl, ku, ab, ldab, work)
ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlangb.f:123
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: