LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlangb()

double precision function zlangb ( character  norm,
integer  n,
integer  kl,
integer  ku,
complex*16, dimension( ldab, * )  ab,
integer  ldab,
double precision, dimension( * )  work 
)

ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

Download ZLANGB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLANGB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
Returns
ZLANGB
    ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in ZLANGB as described
          above.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, ZLANGB is
          set to zero.
[in]KL
          KL is INTEGER
          The number of sub-diagonals of the matrix A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of super-diagonals of the matrix A.  KU >= 0.
[in]AB
          AB is COMPLEX*16 array, dimension (LDAB,N)
          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
          column of A is stored in the j-th column of the array AB as
          follows:
          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KL+KU+1.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
          referenced.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 123 of file zlangb.f.

125*
126* -- LAPACK auxiliary routine --
127* -- LAPACK is a software package provided by Univ. of Tennessee, --
128* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
129*
130* .. Scalar Arguments ..
131 CHARACTER NORM
132 INTEGER KL, KU, LDAB, N
133* ..
134* .. Array Arguments ..
135 DOUBLE PRECISION WORK( * )
136 COMPLEX*16 AB( LDAB, * )
137* ..
138*
139* =====================================================================
140*
141* .. Parameters ..
142 DOUBLE PRECISION ONE, ZERO
143 parameter( one = 1.0d+0, zero = 0.0d+0 )
144* ..
145* .. Local Scalars ..
146 INTEGER I, J, K, L
147 DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
148* ..
149* .. External Functions ..
150 LOGICAL LSAME, DISNAN
151 EXTERNAL lsame, disnan
152* ..
153* .. External Subroutines ..
154 EXTERNAL zlassq
155* ..
156* .. Intrinsic Functions ..
157 INTRINSIC abs, max, min, sqrt
158* ..
159* .. Executable Statements ..
160*
161 IF( n.EQ.0 ) THEN
162 VALUE = zero
163 ELSE IF( lsame( norm, 'M' ) ) THEN
164*
165* Find max(abs(A(i,j))).
166*
167 VALUE = zero
168 DO 20 j = 1, n
169 DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
170 temp = abs( ab( i, j ) )
171 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
172 10 CONTINUE
173 20 CONTINUE
174 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
175*
176* Find norm1(A).
177*
178 VALUE = zero
179 DO 40 j = 1, n
180 sum = zero
181 DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
182 sum = sum + abs( ab( i, j ) )
183 30 CONTINUE
184 IF( VALUE.LT.sum .OR. disnan( sum ) ) VALUE = sum
185 40 CONTINUE
186 ELSE IF( lsame( norm, 'I' ) ) THEN
187*
188* Find normI(A).
189*
190 DO 50 i = 1, n
191 work( i ) = zero
192 50 CONTINUE
193 DO 70 j = 1, n
194 k = ku + 1 - j
195 DO 60 i = max( 1, j-ku ), min( n, j+kl )
196 work( i ) = work( i ) + abs( ab( k+i, j ) )
197 60 CONTINUE
198 70 CONTINUE
199 VALUE = zero
200 DO 80 i = 1, n
201 temp = work( i )
202 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
203 80 CONTINUE
204 ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
205*
206* Find normF(A).
207*
208 scale = zero
209 sum = one
210 DO 90 j = 1, n
211 l = max( 1, j-ku )
212 k = ku + 1 - j + l
213 CALL zlassq( min( n, j+kl )-l+1, ab( k, j ), 1, scale, sum )
214 90 CONTINUE
215 VALUE = scale*sqrt( sum )
216 END IF
217*
218 zlangb = VALUE
219 RETURN
220*
221* End of ZLANGB
222*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:59
double precision function zlangb(norm, n, kl, ku, ab, ldab, work)
ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlangb.f:125
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:124
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: