LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dggsvd()

subroutine dggsvd ( character  jobu,
character  jobv,
character  jobq,
integer  m,
integer  n,
integer  p,
integer  k,
integer  l,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( * )  alpha,
double precision, dimension( * )  beta,
double precision, dimension( ldu, * )  u,
integer  ldu,
double precision, dimension( ldv, * )  v,
integer  ldv,
double precision, dimension( ldq, * )  q,
integer  ldq,
double precision, dimension( * )  work,
integer, dimension( * )  iwork,
integer  info 
)

DGGSVD computes the singular value decomposition (SVD) for OTHER matrices

Download DGGSVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 This routine is deprecated and has been replaced by routine DGGSVD3.

 DGGSVD computes the generalized singular value decomposition (GSVD)
 of an M-by-N real matrix A and P-by-N real matrix B:

       U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )

 where U, V and Q are orthogonal matrices.
 Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
 then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
 D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
 following structures, respectively:

 If M-K-L >= 0,

                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )

                   K  L
        D2 =   L ( 0  S )
             P-L ( 0  0 )

                 N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 )
             L (  0    0   R22 )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.

   R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

                   K M-K K+L-M
        D1 =   K ( I  0    0   )
             M-K ( 0  C    0   )

                     K M-K K+L-M
        D2 =   M-K ( 0  S    0  )
             K+L-M ( 0  0    I  )
               P-L ( 0  0    0  )

                    N-K-L  K   M-K  K+L-M
   ( 0 R ) =     K ( 0    R11  R12  R13  )
               M-K ( 0     0   R22  R23  )
             K+L-M ( 0     0    0   R33  )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   S = diag( BETA(K+1),  ... , BETA(M) ),
   C**2 + S**2 = I.

   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   ( 0  R22 R23 )
   in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the orthogonal
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 A and B implicitly gives the SVD of A*inv(B):
                      A*inv(B) = U*(D1*inv(D2))*V**T.
 If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
 also equal to the CS decomposition of A and B. Furthermore, the GSVD
 can be used to derive the solution of the eigenvalue problem:
                      A**T*A x = lambda* B**T*B x.
 In some literature, the GSVD of A and B is presented in the form
                  U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
 where U and V are orthogonal and X is nonsingular, D1 and D2 are
 ``diagonal''.  The former GSVD form can be converted to the latter
 form by taking the nonsingular matrix X as

                      X = Q*( I   0    )
                            ( 0 inv(R) ).
Parameters
[in]JOBU
          JOBU is CHARACTER*1
          = 'U':  Orthogonal matrix U is computed;
          = 'N':  U is not computed.
[in]JOBV
          JOBV is CHARACTER*1
          = 'V':  Orthogonal matrix V is computed;
          = 'N':  V is not computed.
[in]JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Orthogonal matrix Q is computed;
          = 'N':  Q is not computed.
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
[out]K
          K is INTEGER
[out]L
          L is INTEGER

          On exit, K and L specify the dimension of the subblocks
          described in Purpose.
          K + L = effective numerical rank of (A**T,B**T)**T.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular matrix R, or part of R.
          See Purpose for details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains the triangular matrix R if M-K-L < 0.
          See Purpose for details.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
[out]ALPHA
          ALPHA is DOUBLE PRECISION array, dimension (N)
[out]BETA
          BETA is DOUBLE PRECISION array, dimension (N)

          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = C,
            BETA(K+1:K+L)  = S,
          or if M-K-L < 0,
            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
            BETA(K+1:M) =S, BETA(M+1:K+L) =1
          and
            ALPHA(K+L+1:N) = 0
            BETA(K+L+1:N)  = 0
[out]U
          U is DOUBLE PRECISION array, dimension (LDU,M)
          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
          If JOBU = 'N', U is not referenced.
[in]LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
[out]V
          V is DOUBLE PRECISION array, dimension (LDV,P)
          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
          If JOBV = 'N', V is not referenced.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
[out]Q
          Q is DOUBLE PRECISION array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
          If JOBQ = 'N', Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
[out]WORK
          WORK is DOUBLE PRECISION array,
                      dimension (max(3*N,M,P)+N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
          On exit, IWORK stores the sorting information. More
          precisely, the following loop will sort ALPHA
             for I = K+1, min(M,K+L)
                 swap ALPHA(I) and ALPHA(IWORK(I))
             endfor
          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                converge.  For further details, see subroutine DTGSJA.
Internal Parameters:
  TOLA    DOUBLE PRECISION
  TOLB    DOUBLE PRECISION
          TOLA and TOLB are the thresholds to determine the effective
          rank of (A',B')**T. Generally, they are set to
                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 331 of file dggsvd.f.

334*
335* -- LAPACK driver routine --
336* -- LAPACK is a software package provided by Univ. of Tennessee, --
337* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
338*
339* .. Scalar Arguments ..
340 CHARACTER JOBQ, JOBU, JOBV
341 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
342* ..
343* .. Array Arguments ..
344 INTEGER IWORK( * )
345 DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
346 $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
347 $ V( LDV, * ), WORK( * )
348* ..
349*
350* =====================================================================
351*
352* .. Local Scalars ..
353 LOGICAL WANTQ, WANTU, WANTV
354 INTEGER I, IBND, ISUB, J, NCYCLE
355 DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
356* ..
357* .. External Functions ..
358 LOGICAL LSAME
359 DOUBLE PRECISION DLAMCH, DLANGE
360 EXTERNAL lsame, dlamch, dlange
361* ..
362* .. External Subroutines ..
363 EXTERNAL dcopy, dggsvp, dtgsja, xerbla
364* ..
365* .. Intrinsic Functions ..
366 INTRINSIC max, min
367* ..
368* .. Executable Statements ..
369*
370* Test the input parameters
371*
372 wantu = lsame( jobu, 'U' )
373 wantv = lsame( jobv, 'V' )
374 wantq = lsame( jobq, 'Q' )
375*
376 info = 0
377 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
378 info = -1
379 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
380 info = -2
381 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
382 info = -3
383 ELSE IF( m.LT.0 ) THEN
384 info = -4
385 ELSE IF( n.LT.0 ) THEN
386 info = -5
387 ELSE IF( p.LT.0 ) THEN
388 info = -6
389 ELSE IF( lda.LT.max( 1, m ) ) THEN
390 info = -10
391 ELSE IF( ldb.LT.max( 1, p ) ) THEN
392 info = -12
393 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
394 info = -16
395 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
396 info = -18
397 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
398 info = -20
399 END IF
400 IF( info.NE.0 ) THEN
401 CALL xerbla( 'DGGSVD', -info )
402 RETURN
403 END IF
404*
405* Compute the Frobenius norm of matrices A and B
406*
407 anorm = dlange( '1', m, n, a, lda, work )
408 bnorm = dlange( '1', p, n, b, ldb, work )
409*
410* Get machine precision and set up threshold for determining
411* the effective numerical rank of the matrices A and B.
412*
413 ulp = dlamch( 'Precision' )
414 unfl = dlamch( 'Safe Minimum' )
415 tola = max( m, n )*max( anorm, unfl )*ulp
416 tolb = max( p, n )*max( bnorm, unfl )*ulp
417*
418* Preprocessing
419*
420 CALL dggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
421 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, work,
422 $ work( n+1 ), info )
423*
424* Compute the GSVD of two upper "triangular" matrices
425*
426 CALL dtgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
427 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
428 $ work, ncycle, info )
429*
430* Sort the singular values and store the pivot indices in IWORK
431* Copy ALPHA to WORK, then sort ALPHA in WORK
432*
433 CALL dcopy( n, alpha, 1, work, 1 )
434 ibnd = min( l, m-k )
435 DO 20 i = 1, ibnd
436*
437* Scan for largest ALPHA(K+I)
438*
439 isub = i
440 smax = work( k+i )
441 DO 10 j = i + 1, ibnd
442 temp = work( k+j )
443 IF( temp.GT.smax ) THEN
444 isub = j
445 smax = temp
446 END IF
447 10 CONTINUE
448 IF( isub.NE.i ) THEN
449 work( k+isub ) = work( k+i )
450 work( k+i ) = smax
451 iwork( k+i ) = k + isub
452 ELSE
453 iwork( k+i ) = k + i
454 END IF
455 20 CONTINUE
456*
457 RETURN
458*
459* End of DGGSVD
460*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)
DGGSVP
Definition dggsvp.f:256
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:114
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
DTGSJA
Definition dtgsja.f:378
Here is the call graph for this function: