LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zla_gerfsx_extended()

subroutine zla_gerfsx_extended ( integer  prec_type,
integer  trans_type,
integer  n,
integer  nrhs,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( ldaf, * )  af,
integer  ldaf,
integer, dimension( * )  ipiv,
logical  colequ,
double precision, dimension( * )  c,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( ldy, * )  y,
integer  ldy,
double precision, dimension( * )  berr_out,
integer  n_norms,
double precision, dimension( nrhs, * )  errs_n,
double precision, dimension( nrhs, * )  errs_c,
complex*16, dimension( * )  res,
double precision, dimension( * )  ayb,
complex*16, dimension( * )  dy,
complex*16, dimension( * )  y_tail,
double precision  rcond,
integer  ithresh,
double precision  rthresh,
double precision  dz_ub,
logical  ignore_cwise,
integer  info 
)

ZLA_GERFSX_EXTENDED

Download ZLA_GERFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLA_GERFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by ZGERFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERRS_N
 and ERRS_C for details of the error bounds. Note that this
 subroutine is only responsible for setting the second fields of
 ERRS_N and ERRS_C.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and P
          = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X' or 'E':  Extra
[in]TRANS_TYPE
          TRANS_TYPE is INTEGER
     Specifies the transposition operation on A.
     The value is defined by ILATRANS(T) where T is a CHARACTER and T
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX*16 array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by ZGETRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by ZGETRF; row i of the matrix was interchanged
     with row IPIV(i).
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is DOUBLE PRECISION array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is COMPLEX*16 array, dimension (LDY,NRHS)
     On entry, the solution matrix X, as computed by ZGETRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by ZLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERRS_N
     and ERRS_C).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERRS_N
          ERRS_N is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERRS_N(i,:) corresponds to the ith
     right-hand side.

     The second index in ERRS_N(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERRS_C
          ERRS_C is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERRS_C is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERRS_C(i,:) corresponds to the ith
     right-hand side.

     The second index in ERRS_C(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is COMPLEX*16 array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is DOUBLE PRECISION array, dimension (N)
     Workspace.
[in]DY
          DY is COMPLEX*16 array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is COMPLEX*16 array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is DOUBLE PRECISION
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERRS_N and ERRS_C may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is DOUBLE PRECISION
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is DOUBLE PRECISION
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we define as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to ZGETRS had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 390 of file zla_gerfsx_extended.f.

396*
397* -- LAPACK computational routine --
398* -- LAPACK is a software package provided by Univ. of Tennessee, --
399* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
400*
401* .. Scalar Arguments ..
402 INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
403 $ TRANS_TYPE, N_NORMS
404 LOGICAL COLEQU, IGNORE_CWISE
405 INTEGER ITHRESH
406 DOUBLE PRECISION RTHRESH, DZ_UB
407* ..
408* .. Array Arguments
409 INTEGER IPIV( * )
410 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
411 $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
412 DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
413 $ ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
414* ..
415*
416* =====================================================================
417*
418* .. Local Scalars ..
419 CHARACTER TRANS
420 INTEGER CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
421 DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
422 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
423 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
424 $ EPS, HUGEVAL, INCR_THRESH
425 LOGICAL INCR_PREC
426 COMPLEX*16 ZDUM
427* ..
428* .. Parameters ..
429 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
430 $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
431 $ EXTRA_Y
432 parameter( unstable_state = 0, working_state = 1,
433 $ conv_state = 2,
434 $ noprog_state = 3 )
435 parameter( base_residual = 0, extra_residual = 1,
436 $ extra_y = 2 )
437 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
438 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
439 INTEGER CMP_ERR_I, PIV_GROWTH_I
440 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
441 $ berr_i = 3 )
442 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
443 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
444 $ piv_growth_i = 9 )
445 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
446 $ LA_LINRX_CWISE_I
447 parameter( la_linrx_itref_i = 1,
448 $ la_linrx_ithresh_i = 2 )
449 parameter( la_linrx_cwise_i = 3 )
450 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
451 $ LA_LINRX_RCOND_I
452 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
453 parameter( la_linrx_rcond_i = 3 )
454* ..
455* .. External Subroutines ..
456 EXTERNAL zaxpy, zcopy, zgetrs, zgemv, blas_zgemv_x,
457 $ blas_zgemv2_x, zla_geamv, zla_wwaddw, dlamch,
459 DOUBLE PRECISION DLAMCH
460 CHARACTER CHLA_TRANSTYPE
461* ..
462* .. Intrinsic Functions ..
463 INTRINSIC abs, max, min
464* ..
465* .. Statement Functions ..
466 DOUBLE PRECISION CABS1
467* ..
468* .. Statement Function Definitions ..
469 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
470* ..
471* .. Executable Statements ..
472*
473 IF ( info.NE.0 ) RETURN
474 trans = chla_transtype(trans_type)
475 eps = dlamch( 'Epsilon' )
476 hugeval = dlamch( 'Overflow' )
477* Force HUGEVAL to Inf
478 hugeval = hugeval * hugeval
479* Using HUGEVAL may lead to spurious underflows.
480 incr_thresh = dble( n ) * eps
481*
482 DO j = 1, nrhs
483 y_prec_state = extra_residual
484 IF ( y_prec_state .EQ. extra_y ) THEN
485 DO i = 1, n
486 y_tail( i ) = 0.0d+0
487 END DO
488 END IF
489
490 dxrat = 0.0d+0
491 dxratmax = 0.0d+0
492 dzrat = 0.0d+0
493 dzratmax = 0.0d+0
494 final_dx_x = hugeval
495 final_dz_z = hugeval
496 prevnormdx = hugeval
497 prev_dz_z = hugeval
498 dz_z = hugeval
499 dx_x = hugeval
500
501 x_state = working_state
502 z_state = unstable_state
503 incr_prec = .false.
504
505 DO cnt = 1, ithresh
506*
507* Compute residual RES = B_s - op(A_s) * Y,
508* op(A) = A, A**T, or A**H depending on TRANS (and type).
509*
510 CALL zcopy( n, b( 1, j ), 1, res, 1 )
511 IF ( y_prec_state .EQ. base_residual ) THEN
512 CALL zgemv( trans, n, n, (-1.0d+0,0.0d+0), a, lda,
513 $ y( 1, j ), 1, (1.0d+0,0.0d+0), res, 1)
514 ELSE IF (y_prec_state .EQ. extra_residual) THEN
515 CALL blas_zgemv_x( trans_type, n, n, (-1.0d+0,0.0d+0), a,
516 $ lda, y( 1, j ), 1, (1.0d+0,0.0d+0),
517 $ res, 1, prec_type )
518 ELSE
519 CALL blas_zgemv2_x( trans_type, n, n, (-1.0d+0,0.0d+0),
520 $ a, lda, y(1, j), y_tail, 1, (1.0d+0,0.0d+0), res, 1,
521 $ prec_type)
522 END IF
523
524! XXX: RES is no longer needed.
525 CALL zcopy( n, res, 1, dy, 1 )
526 CALL zgetrs( trans, n, 1, af, ldaf, ipiv, dy, n, info )
527*
528* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
529*
530 normx = 0.0d+0
531 normy = 0.0d+0
532 normdx = 0.0d+0
533 dz_z = 0.0d+0
534 ymin = hugeval
535*
536 DO i = 1, n
537 yk = cabs1( y( i, j ) )
538 dyk = cabs1( dy( i ) )
539
540 IF ( yk .NE. 0.0d+0 ) THEN
541 dz_z = max( dz_z, dyk / yk )
542 ELSE IF ( dyk .NE. 0.0d+0 ) THEN
543 dz_z = hugeval
544 END IF
545
546 ymin = min( ymin, yk )
547
548 normy = max( normy, yk )
549
550 IF ( colequ ) THEN
551 normx = max( normx, yk * c( i ) )
552 normdx = max( normdx, dyk * c( i ) )
553 ELSE
554 normx = normy
555 normdx = max(normdx, dyk)
556 END IF
557 END DO
558
559 IF ( normx .NE. 0.0d+0 ) THEN
560 dx_x = normdx / normx
561 ELSE IF ( normdx .EQ. 0.0d+0 ) THEN
562 dx_x = 0.0d+0
563 ELSE
564 dx_x = hugeval
565 END IF
566
567 dxrat = normdx / prevnormdx
568 dzrat = dz_z / prev_dz_z
569*
570* Check termination criteria
571*
572 IF (.NOT.ignore_cwise
573 $ .AND. ymin*rcond .LT. incr_thresh*normy
574 $ .AND. y_prec_state .LT. extra_y )
575 $ incr_prec = .true.
576
577 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
578 $ x_state = working_state
579 IF ( x_state .EQ. working_state ) THEN
580 IF (dx_x .LE. eps) THEN
581 x_state = conv_state
582 ELSE IF ( dxrat .GT. rthresh ) THEN
583 IF ( y_prec_state .NE. extra_y ) THEN
584 incr_prec = .true.
585 ELSE
586 x_state = noprog_state
587 END IF
588 ELSE
589 IF ( dxrat .GT. dxratmax ) dxratmax = dxrat
590 END IF
591 IF ( x_state .GT. working_state ) final_dx_x = dx_x
592 END IF
593
594 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
595 $ z_state = working_state
596 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
597 $ z_state = working_state
598 IF ( z_state .EQ. working_state ) THEN
599 IF ( dz_z .LE. eps ) THEN
600 z_state = conv_state
601 ELSE IF ( dz_z .GT. dz_ub ) THEN
602 z_state = unstable_state
603 dzratmax = 0.0d+0
604 final_dz_z = hugeval
605 ELSE IF ( dzrat .GT. rthresh ) THEN
606 IF ( y_prec_state .NE. extra_y ) THEN
607 incr_prec = .true.
608 ELSE
609 z_state = noprog_state
610 END IF
611 ELSE
612 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
613 END IF
614 IF ( z_state .GT. working_state ) final_dz_z = dz_z
615 END IF
616*
617* Exit if both normwise and componentwise stopped working,
618* but if componentwise is unstable, let it go at least two
619* iterations.
620*
621 IF ( x_state.NE.working_state ) THEN
622 IF ( ignore_cwise ) GOTO 666
623 IF ( z_state.EQ.noprog_state .OR. z_state.EQ.conv_state )
624 $ GOTO 666
625 IF ( z_state.EQ.unstable_state .AND. cnt.GT.1 ) GOTO 666
626 END IF
627
628 IF ( incr_prec ) THEN
629 incr_prec = .false.
630 y_prec_state = y_prec_state + 1
631 DO i = 1, n
632 y_tail( i ) = 0.0d+0
633 END DO
634 END IF
635
636 prevnormdx = normdx
637 prev_dz_z = dz_z
638*
639* Update solution.
640*
641 IF ( y_prec_state .LT. extra_y ) THEN
642 CALL zaxpy( n, (1.0d+0,0.0d+0), dy, 1, y(1,j), 1 )
643 ELSE
644 CALL zla_wwaddw( n, y( 1, j ), y_tail, dy )
645 END IF
646
647 END DO
648* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
649 666 CONTINUE
650*
651* Set final_* when cnt hits ithresh
652*
653 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
654 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
655*
656* Compute error bounds
657*
658 IF (n_norms .GE. 1) THEN
659 errs_n( j, la_linrx_err_i ) = final_dx_x / (1 - dxratmax)
660
661 END IF
662 IF ( n_norms .GE. 2 ) THEN
663 errs_c( j, la_linrx_err_i ) = final_dz_z / (1 - dzratmax)
664 END IF
665*
666* Compute componentwise relative backward error from formula
667* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
668* where abs(Z) is the componentwise absolute value of the matrix
669* or vector Z.
670*
671* Compute residual RES = B_s - op(A_s) * Y,
672* op(A) = A, A**T, or A**H depending on TRANS (and type).
673*
674 CALL zcopy( n, b( 1, j ), 1, res, 1 )
675 CALL zgemv( trans, n, n, (-1.0d+0,0.0d+0), a, lda, y(1,j), 1,
676 $ (1.0d+0,0.0d+0), res, 1 )
677
678 DO i = 1, n
679 ayb( i ) = cabs1( b( i, j ) )
680 END DO
681*
682* Compute abs(op(A_s))*abs(Y) + abs(B_s).
683*
684 CALL zla_geamv ( trans_type, n, n, 1.0d+0,
685 $ a, lda, y(1, j), 1, 1.0d+0, ayb, 1 )
686
687 CALL zla_lin_berr ( n, n, 1, res, ayb, berr_out( j ) )
688*
689* End of loop for each RHS.
690*
691 END DO
692*
693 RETURN
694*
695* End of ZLA_GERFSX_EXTENDED
696*
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
Definition zgemv.f:160
subroutine zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
ZGETRS
Definition zgetrs.f:121
subroutine zla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
Definition zla_geamv.f:177
subroutine zla_lin_berr(n, nz, nrhs, res, ayb, berr)
ZLA_LIN_BERR computes a component-wise relative backward error.
character *1 function chla_transtype(trans)
CHLA_TRANSTYPE
subroutine zla_wwaddw(n, x, y, w)
ZLA_WWADDW adds a vector into a doubled-single vector.
Definition zla_wwaddw.f:81
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the call graph for this function:
Here is the caller graph for this function: