LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zla_gerfsx_extended()

subroutine zla_gerfsx_extended ( integer prec_type,
integer trans_type,
integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
logical colequ,
double precision, dimension( * ) c,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldy, * ) y,
integer ldy,
double precision, dimension( * ) berr_out,
integer n_norms,
double precision, dimension( nrhs, * ) errs_n,
double precision, dimension( nrhs, * ) errs_c,
complex*16, dimension( * ) res,
double precision, dimension( * ) ayb,
complex*16, dimension( * ) dy,
complex*16, dimension( * ) y_tail,
double precision rcond,
integer ithresh,
double precision rthresh,
double precision dz_ub,
logical ignore_cwise,
integer info )

ZLA_GERFSX_EXTENDED

Download ZLA_GERFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZLA_GERFSX_EXTENDED improves the computed solution to a system of
!> linear equations by performing extra-precise iterative refinement
!> and provides error bounds and backward error estimates for the solution.
!> This subroutine is called by ZGERFSX to perform iterative refinement.
!> In addition to normwise error bound, the code provides maximum
!> componentwise error bound if possible. See comments for ERRS_N
!> and ERRS_C for details of the error bounds. Note that this
!> subroutine is only responsible for setting the second fields of
!> ERRS_N and ERRS_C.
!> 
Parameters
[in]PREC_TYPE
!>          PREC_TYPE is INTEGER
!>     Specifies the intermediate precision to be used in refinement.
!>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
!>          = 'S':  Single
!>          = 'D':  Double
!>          = 'I':  Indigenous
!>          = 'X' or 'E':  Extra
!> 
[in]TRANS_TYPE
!>          TRANS_TYPE is INTEGER
!>     Specifies the transposition operation on A.
!>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
!>          = 'N':  No transpose
!>          = 'T':  Transpose
!>          = 'C':  Conjugate transpose
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right-hand-sides, i.e., the number of columns of the
!>     matrix B.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]AF
!>          AF is COMPLEX*16 array, dimension (LDAF,N)
!>     The factors L and U from the factorization
!>     A = P*L*U as computed by ZGETRF.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     The pivot indices from the factorization A = P*L*U
!>     as computed by ZGETRF; row i of the matrix was interchanged
!>     with row IPIV(i).
!> 
[in]COLEQU
!>          COLEQU is LOGICAL
!>     If .TRUE. then column equilibration was done to A before calling
!>     this routine. This is needed to compute the solution and error
!>     bounds correctly.
!> 
[in]C
!>          C is DOUBLE PRECISION array, dimension (N)
!>     The column scale factors for A. If COLEQU = .FALSE., C
!>     is not accessed. If C is input, each element of C should be a power
!>     of the radix to ensure a reliable solution and error estimates.
!>     Scaling by powers of the radix does not cause rounding errors unless
!>     the result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>     The right-hand-side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in,out]Y
!>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
!>     On entry, the solution matrix X, as computed by ZGETRS.
!>     On exit, the improved solution matrix Y.
!> 
[in]LDY
!>          LDY is INTEGER
!>     The leading dimension of the array Y.  LDY >= max(1,N).
!> 
[out]BERR_OUT
!>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
!>     On exit, BERR_OUT(j) contains the componentwise relative backward
!>     error for right-hand-side j from the formula
!>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
!>     where abs(Z) is the componentwise absolute value of the matrix
!>     or vector Z. This is computed by ZLA_LIN_BERR.
!> 
[in]N_NORMS
!>          N_NORMS is INTEGER
!>     Determines which error bounds to return (see ERRS_N
!>     and ERRS_C).
!>     If N_NORMS >= 1 return normwise error bounds.
!>     If N_NORMS >= 2 return componentwise error bounds.
!> 
[in,out]ERRS_N
!>          ERRS_N is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERRS_N(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERRS_N(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     This subroutine is only responsible for setting the second field
!>     above.
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in,out]ERRS_C
!>          ERRS_C is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERRS_C is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERRS_C(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERRS_C(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     This subroutine is only responsible for setting the second field
!>     above.
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]RES
!>          RES is COMPLEX*16 array, dimension (N)
!>     Workspace to hold the intermediate residual.
!> 
[in]AYB
!>          AYB is DOUBLE PRECISION array, dimension (N)
!>     Workspace.
!> 
[in]DY
!>          DY is COMPLEX*16 array, dimension (N)
!>     Workspace to hold the intermediate solution.
!> 
[in]Y_TAIL
!>          Y_TAIL is COMPLEX*16 array, dimension (N)
!>     Workspace to hold the trailing bits of the intermediate solution.
!> 
[in]RCOND
!>          RCOND is DOUBLE PRECISION
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[in]ITHRESH
!>          ITHRESH is INTEGER
!>     The maximum number of residual computations allowed for
!>     refinement. The default is 10. For 'aggressive' set to 100 to
!>     permit convergence using approximate factorizations or
!>     factorizations other than LU. If the factorization uses a
!>     technique other than Gaussian elimination, the guarantees in
!>     ERRS_N and ERRS_C may no longer be trustworthy.
!> 
[in]RTHRESH
!>          RTHRESH is DOUBLE PRECISION
!>     Determines when to stop refinement if the error estimate stops
!>     decreasing. Refinement will stop when the next solution no longer
!>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
!>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
!>     default value is 0.5. For 'aggressive' set to 0.9 to permit
!>     convergence on extremely ill-conditioned matrices. See LAWN 165
!>     for more details.
!> 
[in]DZ_UB
!>          DZ_UB is DOUBLE PRECISION
!>     Determines when to start considering componentwise convergence.
!>     Componentwise convergence is only considered after each component
!>     of the solution Y is stable, which we define as the relative
!>     change in each component being less than DZ_UB. The default value
!>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
!>     more details.
!> 
[in]IGNORE_CWISE
!>          IGNORE_CWISE is LOGICAL
!>     If .TRUE. then ignore componentwise convergence. Default value
!>     is .FALSE..
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit.
!>       < 0:  if INFO = -i, the ith argument to ZGETRS had an illegal
!>             value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 388 of file zla_gerfsx_extended.f.

395*
396* -- LAPACK computational routine --
397* -- LAPACK is a software package provided by Univ. of Tennessee, --
398* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
399*
400* .. Scalar Arguments ..
401 INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
402 $ TRANS_TYPE, N_NORMS
403 LOGICAL COLEQU, IGNORE_CWISE
404 INTEGER ITHRESH
405 DOUBLE PRECISION RTHRESH, DZ_UB
406* ..
407* .. Array Arguments
408 INTEGER IPIV( * )
409 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
410 $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
411 DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
412 $ ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
413* ..
414*
415* =====================================================================
416*
417* .. Local Scalars ..
418 CHARACTER TRANS
419 INTEGER CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
420 DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
421 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
422 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
423 $ EPS, HUGEVAL, INCR_THRESH
424 LOGICAL INCR_PREC
425 COMPLEX*16 ZDUM
426* ..
427* .. Parameters ..
428 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
429 $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
430 $ EXTRA_Y
431 parameter( unstable_state = 0, working_state = 1,
432 $ conv_state = 2,
433 $ noprog_state = 3 )
434 parameter( base_residual = 0, extra_residual = 1,
435 $ extra_y = 2 )
436 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
437 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
438 INTEGER CMP_ERR_I, PIV_GROWTH_I
439 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
440 $ berr_i = 3 )
441 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
442 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
443 $ piv_growth_i = 9 )
444 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
445 $ LA_LINRX_CWISE_I
446 parameter( la_linrx_itref_i = 1,
447 $ la_linrx_ithresh_i = 2 )
448 parameter( la_linrx_cwise_i = 3 )
449 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
450 $ LA_LINRX_RCOND_I
451 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
452 parameter( la_linrx_rcond_i = 3 )
453* ..
454* .. External Subroutines ..
455 EXTERNAL zaxpy, zcopy, zgetrs, zgemv,
456 $ blas_zgemv_x,
457 $ blas_zgemv2_x, zla_geamv, zla_wwaddw, dlamch,
459 DOUBLE PRECISION DLAMCH
460 CHARACTER CHLA_TRANSTYPE
461* ..
462* .. Intrinsic Functions ..
463 INTRINSIC abs, max, min
464* ..
465* .. Statement Functions ..
466 DOUBLE PRECISION CABS1
467* ..
468* .. Statement Function Definitions ..
469 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
470* ..
471* .. Executable Statements ..
472*
473 IF ( info.NE.0 ) RETURN
474 trans = chla_transtype(trans_type)
475 eps = dlamch( 'Epsilon' )
476 hugeval = dlamch( 'Overflow' )
477* Force HUGEVAL to Inf
478 hugeval = hugeval * hugeval
479* Using HUGEVAL may lead to spurious underflows.
480 incr_thresh = dble( n ) * eps
481*
482 DO j = 1, nrhs
483 y_prec_state = extra_residual
484 IF ( y_prec_state .EQ. extra_y ) THEN
485 DO i = 1, n
486 y_tail( i ) = 0.0d+0
487 END DO
488 END IF
489
490 dxrat = 0.0d+0
491 dxratmax = 0.0d+0
492 dzrat = 0.0d+0
493 dzratmax = 0.0d+0
494 final_dx_x = hugeval
495 final_dz_z = hugeval
496 prevnormdx = hugeval
497 prev_dz_z = hugeval
498 dz_z = hugeval
499 dx_x = hugeval
500
501 x_state = working_state
502 z_state = unstable_state
503 incr_prec = .false.
504
505 DO cnt = 1, ithresh
506*
507* Compute residual RES = B_s - op(A_s) * Y,
508* op(A) = A, A**T, or A**H depending on TRANS (and type).
509*
510 CALL zcopy( n, b( 1, j ), 1, res, 1 )
511 IF ( y_prec_state .EQ. base_residual ) THEN
512 CALL zgemv( trans, n, n, (-1.0d+0,0.0d+0), a, lda,
513 $ y( 1, j ), 1, (1.0d+0,0.0d+0), res, 1)
514 ELSE IF (y_prec_state .EQ. extra_residual) THEN
515 CALL blas_zgemv_x( trans_type, n, n, (-1.0d+0,0.0d+0),
516 $ a,
517 $ lda, y( 1, j ), 1, (1.0d+0,0.0d+0),
518 $ res, 1, prec_type )
519 ELSE
520 CALL blas_zgemv2_x( trans_type, n, n,
521 $ (-1.0d+0,0.0d+0),
522 $ a, lda, y(1, j), y_tail, 1, (1.0d+0,0.0d+0), res, 1,
523 $ prec_type)
524 END IF
525
526! XXX: RES is no longer needed.
527 CALL zcopy( n, res, 1, dy, 1 )
528 CALL zgetrs( trans, n, 1, af, ldaf, ipiv, dy, n, info )
529*
530* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
531*
532 normx = 0.0d+0
533 normy = 0.0d+0
534 normdx = 0.0d+0
535 dz_z = 0.0d+0
536 ymin = hugeval
537*
538 DO i = 1, n
539 yk = cabs1( y( i, j ) )
540 dyk = cabs1( dy( i ) )
541
542 IF ( yk .NE. 0.0d+0 ) THEN
543 dz_z = max( dz_z, dyk / yk )
544 ELSE IF ( dyk .NE. 0.0d+0 ) THEN
545 dz_z = hugeval
546 END IF
547
548 ymin = min( ymin, yk )
549
550 normy = max( normy, yk )
551
552 IF ( colequ ) THEN
553 normx = max( normx, yk * c( i ) )
554 normdx = max( normdx, dyk * c( i ) )
555 ELSE
556 normx = normy
557 normdx = max(normdx, dyk)
558 END IF
559 END DO
560
561 IF ( normx .NE. 0.0d+0 ) THEN
562 dx_x = normdx / normx
563 ELSE IF ( normdx .EQ. 0.0d+0 ) THEN
564 dx_x = 0.0d+0
565 ELSE
566 dx_x = hugeval
567 END IF
568
569 dxrat = normdx / prevnormdx
570 dzrat = dz_z / prev_dz_z
571*
572* Check termination criteria
573*
574 IF (.NOT.ignore_cwise
575 $ .AND. ymin*rcond .LT. incr_thresh*normy
576 $ .AND. y_prec_state .LT. extra_y )
577 $ incr_prec = .true.
578
579 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
580 $ x_state = working_state
581 IF ( x_state .EQ. working_state ) THEN
582 IF (dx_x .LE. eps) THEN
583 x_state = conv_state
584 ELSE IF ( dxrat .GT. rthresh ) THEN
585 IF ( y_prec_state .NE. extra_y ) THEN
586 incr_prec = .true.
587 ELSE
588 x_state = noprog_state
589 END IF
590 ELSE
591 IF ( dxrat .GT. dxratmax ) dxratmax = dxrat
592 END IF
593 IF ( x_state .GT. working_state ) final_dx_x = dx_x
594 END IF
595
596 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
597 $ z_state = working_state
598 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
599 $ z_state = working_state
600 IF ( z_state .EQ. working_state ) THEN
601 IF ( dz_z .LE. eps ) THEN
602 z_state = conv_state
603 ELSE IF ( dz_z .GT. dz_ub ) THEN
604 z_state = unstable_state
605 dzratmax = 0.0d+0
606 final_dz_z = hugeval
607 ELSE IF ( dzrat .GT. rthresh ) THEN
608 IF ( y_prec_state .NE. extra_y ) THEN
609 incr_prec = .true.
610 ELSE
611 z_state = noprog_state
612 END IF
613 ELSE
614 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
615 END IF
616 IF ( z_state .GT. working_state ) final_dz_z = dz_z
617 END IF
618*
619* Exit if both normwise and componentwise stopped working,
620* but if componentwise is unstable, let it go at least two
621* iterations.
622*
623 IF ( x_state.NE.working_state ) THEN
624 IF ( ignore_cwise ) GOTO 666
625 IF ( z_state.EQ.noprog_state .OR. z_state.EQ.conv_state )
626 $ GOTO 666
627 IF ( z_state.EQ.unstable_state .AND. cnt.GT.1 ) GOTO 666
628 END IF
629
630 IF ( incr_prec ) THEN
631 incr_prec = .false.
632 y_prec_state = y_prec_state + 1
633 DO i = 1, n
634 y_tail( i ) = 0.0d+0
635 END DO
636 END IF
637
638 prevnormdx = normdx
639 prev_dz_z = dz_z
640*
641* Update solution.
642*
643 IF ( y_prec_state .LT. extra_y ) THEN
644 CALL zaxpy( n, (1.0d+0,0.0d+0), dy, 1, y(1,j), 1 )
645 ELSE
646 CALL zla_wwaddw( n, y( 1, j ), y_tail, dy )
647 END IF
648
649 END DO
650* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
651 666 CONTINUE
652*
653* Set final_* when cnt hits ithresh
654*
655 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
656 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
657*
658* Compute error bounds
659*
660 IF (n_norms .GE. 1) THEN
661 errs_n( j, la_linrx_err_i ) = final_dx_x / (1 - dxratmax)
662
663 END IF
664 IF ( n_norms .GE. 2 ) THEN
665 errs_c( j, la_linrx_err_i ) = final_dz_z / (1 - dzratmax)
666 END IF
667*
668* Compute componentwise relative backward error from formula
669* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
670* where abs(Z) is the componentwise absolute value of the matrix
671* or vector Z.
672*
673* Compute residual RES = B_s - op(A_s) * Y,
674* op(A) = A, A**T, or A**H depending on TRANS (and type).
675*
676 CALL zcopy( n, b( 1, j ), 1, res, 1 )
677 CALL zgemv( trans, n, n, (-1.0d+0,0.0d+0), a, lda, y(1,j),
678 $ 1,
679 $ (1.0d+0,0.0d+0), res, 1 )
680
681 DO i = 1, n
682 ayb( i ) = cabs1( b( i, j ) )
683 END DO
684*
685* Compute abs(op(A_s))*abs(Y) + abs(B_s).
686*
687 CALL zla_geamv ( trans_type, n, n, 1.0d+0,
688 $ a, lda, y(1, j), 1, 1.0d+0, ayb, 1 )
689
690 CALL zla_lin_berr ( n, n, 1, res, ayb, berr_out( j ) )
691*
692* End of loop for each RHS.
693*
694 END DO
695*
696 RETURN
697*
698* End of ZLA_GERFSX_EXTENDED
699*
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
Definition zgemv.f:160
subroutine zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
ZGETRS
Definition zgetrs.f:119
subroutine zla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
Definition zla_geamv.f:176
subroutine zla_lin_berr(n, nz, nrhs, res, ayb, berr)
ZLA_LIN_BERR computes a component-wise relative backward error.
character *1 function chla_transtype(trans)
CHLA_TRANSTYPE
subroutine zla_wwaddw(n, x, y, w)
ZLA_WWADDW adds a vector into a doubled-single vector.
Definition zla_wwaddw.f:79
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the call graph for this function:
Here is the caller graph for this function: