LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zla_lin_berr()

subroutine zla_lin_berr ( integer  n,
integer  nz,
integer  nrhs,
complex*16, dimension( n, nrhs )  res,
double precision, dimension( n, nrhs )  ayb,
double precision, dimension( nrhs )  berr 
)

ZLA_LIN_BERR computes a component-wise relative backward error.

Download ZLA_LIN_BERR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    ZLA_LIN_BERR computes componentwise relative backward error from
    the formula
        max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
    where abs(Z) is the componentwise absolute value of the matrix
    or vector Z.
Parameters
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NZ
          NZ is INTEGER
     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
     guard against spuriously zero residuals. Default value is N.
[in]NRHS
          NRHS is INTEGER
     The number of right hand sides, i.e., the number of columns
     of the matrices AYB, RES, and BERR.  NRHS >= 0.
[in]RES
          RES is COMPLEX*16 array, dimension (N,NRHS)
     The residual matrix, i.e., the matrix R in the relative backward
     error formula above.
[in]AYB
          AYB is DOUBLE PRECISION array, dimension (N, NRHS)
     The denominator in the relative backward error formula above, i.e.,
     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
     are from iterative refinement (see zla_gerfsx_extended.f).
[out]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
     The componentwise relative backward error from the formula above.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 100 of file zla_lin_berr.f.

101*
102* -- LAPACK computational routine --
103* -- LAPACK is a software package provided by Univ. of Tennessee, --
104* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
105*
106* .. Scalar Arguments ..
107 INTEGER N, NZ, NRHS
108* ..
109* .. Array Arguments ..
110 DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
111 COMPLEX*16 RES( N, NRHS )
112* ..
113*
114* =====================================================================
115*
116* .. Local Scalars ..
117 DOUBLE PRECISION TMP
118 INTEGER I, J
119 COMPLEX*16 CDUM
120* ..
121* .. Intrinsic Functions ..
122 INTRINSIC abs, real, dimag, max
123* ..
124* .. External Functions ..
125 EXTERNAL dlamch
126 DOUBLE PRECISION DLAMCH
127 DOUBLE PRECISION SAFE1
128* ..
129* .. Statement Functions ..
130 COMPLEX*16 CABS1
131* ..
132* .. Statement Function Definitions ..
133 cabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
134* ..
135* .. Executable Statements ..
136*
137* Adding SAFE1 to the numerator guards against spuriously zero
138* residuals. A similar safeguard is in the CLA_yyAMV routine used
139* to compute AYB.
140*
141 safe1 = dlamch( 'Safe minimum' )
142 safe1 = (nz+1)*safe1
143
144 DO j = 1, nrhs
145 berr(j) = 0.0d+0
146 DO i = 1, n
147 IF (ayb(i,j) .NE. 0.0d+0) THEN
148 tmp = (safe1 + cabs1(res(i,j)))/ayb(i,j)
149 berr(j) = max( berr(j), tmp )
150 END IF
151*
152* If AYB is exactly 0.0 (and if computed by CLA_yyAMV), then we know
153* the true residual also must be exactly 0.0.
154*
155 END DO
156 END DO
157*
158* End of ZLA_LIN_BERR
159*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the call graph for this function:
Here is the caller graph for this function: