LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zla_lin_berr()

subroutine zla_lin_berr ( integer n,
integer nz,
integer nrhs,
complex*16, dimension( n, nrhs ) res,
double precision, dimension( n, nrhs ) ayb,
double precision, dimension( nrhs ) berr )

ZLA_LIN_BERR computes a component-wise relative backward error.

Download ZLA_LIN_BERR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    ZLA_LIN_BERR computes componentwise relative backward error from
!>    the formula
!>        max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
!>    where abs(Z) is the componentwise absolute value of the matrix
!>    or vector Z.
!> 
Parameters
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NZ
!>          NZ is INTEGER
!>     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
!>     guard against spuriously zero residuals. Default value is N.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices AYB, RES, and BERR.  NRHS >= 0.
!> 
[in]RES
!>          RES is COMPLEX*16 array, dimension (N,NRHS)
!>     The residual matrix, i.e., the matrix R in the relative backward
!>     error formula above.
!> 
[in]AYB
!>          AYB is DOUBLE PRECISION array, dimension (N, NRHS)
!>     The denominator in the relative backward error formula above, i.e.,
!>     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
!>     are from iterative refinement (see zla_gerfsx_extended.f).
!> 
[out]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>     The componentwise relative backward error from the formula above.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 98 of file zla_lin_berr.f.

99*
100* -- LAPACK computational routine --
101* -- LAPACK is a software package provided by Univ. of Tennessee, --
102* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
103*
104* .. Scalar Arguments ..
105 INTEGER N, NZ, NRHS
106* ..
107* .. Array Arguments ..
108 DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
109 COMPLEX*16 RES( N, NRHS )
110* ..
111*
112* =====================================================================
113*
114* .. Local Scalars ..
115 DOUBLE PRECISION TMP
116 INTEGER I, J
117 COMPLEX*16 CDUM
118* ..
119* .. Intrinsic Functions ..
120 INTRINSIC abs, real, dimag, max
121* ..
122* .. External Functions ..
123 EXTERNAL dlamch
124 DOUBLE PRECISION DLAMCH
125 DOUBLE PRECISION SAFE1
126* ..
127* .. Statement Functions ..
128 COMPLEX*16 CABS1
129* ..
130* .. Statement Function Definitions ..
131 cabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
132* ..
133* .. Executable Statements ..
134*
135* Adding SAFE1 to the numerator guards against spuriously zero
136* residuals. A similar safeguard is in the CLA_yyAMV routine used
137* to compute AYB.
138*
139 safe1 = dlamch( 'Safe minimum' )
140 safe1 = (nz+1)*safe1
141
142 DO j = 1, nrhs
143 berr(j) = 0.0d+0
144 DO i = 1, n
145 IF (ayb(i,j) .NE. 0.0d+0) THEN
146 tmp = (safe1 + cabs1(res(i,j)))/ayb(i,j)
147 berr(j) = max( berr(j), tmp )
148 END IF
149*
150* If AYB is exactly 0.0 (and if computed by CLA_yyAMV), then we know
151* the true residual also must be exactly 0.0.
152*
153 END DO
154 END DO
155*
156* End of ZLA_LIN_BERR
157*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the call graph for this function:
Here is the caller graph for this function: