LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgeqpf()

subroutine sgeqpf ( integer  m,
integer  n,
real, dimension( lda, * )  a,
integer  lda,
integer, dimension( * )  jpvt,
real, dimension( * )  tau,
real, dimension( * )  work,
integer  info 
)

SGEQPF

Download SGEQPF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 This routine is deprecated and has been replaced by routine SGEQP3.

 SGEQPF computes a QR factorization with column pivoting of a
 real M-by-N matrix A: A*P = Q*R.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A. N >= 0
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the upper triangle of the array contains the
          min(M,N)-by-N upper triangular matrix R; the elements
          below the diagonal, together with the array TAU,
          represent the orthogonal matrix Q as a product of
          min(m,n) elementary reflectors.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in,out]JPVT
          JPVT is INTEGER array, dimension (N)
          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
          to the front of A*P (a leading column); if JPVT(i) = 0,
          the i-th column of A is a free column.
          On exit, if JPVT(i) = k, then the i-th column of A*P
          was the k-th column of A.
[out]TAU
          TAU is REAL array, dimension (min(M,N))
          The scalar factors of the elementary reflectors.
[out]WORK
          WORK is REAL array, dimension (3*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(n)

  Each H(i) has the form

     H = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).

  The matrix P is represented in jpvt as follows: If
     jpvt(j) = i
  then the jth column of P is the ith canonical unit vector.

  Partial column norm updating strategy modified by
    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
    University of Zagreb, Croatia.
  -- April 2011                                                      --
  For more details see LAPACK Working Note 176.

Definition at line 141 of file sgeqpf.f.

142*
143* -- LAPACK computational routine --
144* -- LAPACK is a software package provided by Univ. of Tennessee, --
145* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
146*
147* .. Scalar Arguments ..
148 INTEGER INFO, LDA, M, N
149* ..
150* .. Array Arguments ..
151 INTEGER JPVT( * )
152 REAL A( LDA, * ), TAU( * ), WORK( * )
153* ..
154*
155* =====================================================================
156*
157* .. Parameters ..
158 REAL ZERO, ONE
159 parameter( zero = 0.0e+0, one = 1.0e+0 )
160* ..
161* .. Local Scalars ..
162 INTEGER I, ITEMP, J, MA, MN, PVT
163 REAL AII, TEMP, TEMP2, TOL3Z
164* ..
165* .. External Subroutines ..
166 EXTERNAL sgeqr2, slarf, slarfg, sorm2r, sswap, xerbla
167* ..
168* .. Intrinsic Functions ..
169 INTRINSIC abs, max, min, sqrt
170* ..
171* .. External Functions ..
172 INTEGER ISAMAX
173 REAL SLAMCH, SNRM2
174 EXTERNAL isamax, slamch, snrm2
175* ..
176* .. Executable Statements ..
177*
178* Test the input arguments
179*
180 info = 0
181 IF( m.LT.0 ) THEN
182 info = -1
183 ELSE IF( n.LT.0 ) THEN
184 info = -2
185 ELSE IF( lda.LT.max( 1, m ) ) THEN
186 info = -4
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'SGEQPF', -info )
190 RETURN
191 END IF
192*
193 mn = min( m, n )
194 tol3z = sqrt(slamch('Epsilon'))
195*
196* Move initial columns up front
197*
198 itemp = 1
199 DO 10 i = 1, n
200 IF( jpvt( i ).NE.0 ) THEN
201 IF( i.NE.itemp ) THEN
202 CALL sswap( m, a( 1, i ), 1, a( 1, itemp ), 1 )
203 jpvt( i ) = jpvt( itemp )
204 jpvt( itemp ) = i
205 ELSE
206 jpvt( i ) = i
207 END IF
208 itemp = itemp + 1
209 ELSE
210 jpvt( i ) = i
211 END IF
212 10 CONTINUE
213 itemp = itemp - 1
214*
215* Compute the QR factorization and update remaining columns
216*
217 IF( itemp.GT.0 ) THEN
218 ma = min( itemp, m )
219 CALL sgeqr2( m, ma, a, lda, tau, work, info )
220 IF( ma.LT.n ) THEN
221 CALL sorm2r( 'Left', 'Transpose', m, n-ma, ma, a, lda, tau,
222 $ a( 1, ma+1 ), lda, work, info )
223 END IF
224 END IF
225*
226 IF( itemp.LT.mn ) THEN
227*
228* Initialize partial column norms. The first n elements of
229* work store the exact column norms.
230*
231 DO 20 i = itemp + 1, n
232 work( i ) = snrm2( m-itemp, a( itemp+1, i ), 1 )
233 work( n+i ) = work( i )
234 20 CONTINUE
235*
236* Compute factorization
237*
238 DO 40 i = itemp + 1, mn
239*
240* Determine ith pivot column and swap if necessary
241*
242 pvt = ( i-1 ) + isamax( n-i+1, work( i ), 1 )
243*
244 IF( pvt.NE.i ) THEN
245 CALL sswap( m, a( 1, pvt ), 1, a( 1, i ), 1 )
246 itemp = jpvt( pvt )
247 jpvt( pvt ) = jpvt( i )
248 jpvt( i ) = itemp
249 work( pvt ) = work( i )
250 work( n+pvt ) = work( n+i )
251 END IF
252*
253* Generate elementary reflector H(i)
254*
255 IF( i.LT.m ) THEN
256 CALL slarfg( m-i+1, a( i, i ), a( i+1, i ), 1, tau( i ) )
257 ELSE
258 CALL slarfg( 1, a( m, m ), a( m, m ), 1, tau( m ) )
259 END IF
260*
261 IF( i.LT.n ) THEN
262*
263* Apply H(i) to A(i:m,i+1:n) from the left
264*
265 aii = a( i, i )
266 a( i, i ) = one
267 CALL slarf( 'LEFT', m-i+1, n-i, a( i, i ), 1, tau( i ),
268 $ a( i, i+1 ), lda, work( 2*n+1 ) )
269 a( i, i ) = aii
270 END IF
271*
272* Update partial column norms
273*
274 DO 30 j = i + 1, n
275 IF( work( j ).NE.zero ) THEN
276*
277* NOTE: The following 4 lines follow from the analysis in
278* Lapack Working Note 176.
279*
280 temp = abs( a( i, j ) ) / work( j )
281 temp = max( zero, ( one+temp )*( one-temp ) )
282 temp2 = temp*( work( j ) / work( n+j ) )**2
283 IF( temp2 .LE. tol3z ) THEN
284 IF( m-i.GT.0 ) THEN
285 work( j ) = snrm2( m-i, a( i+1, j ), 1 )
286 work( n+j ) = work( j )
287 ELSE
288 work( j ) = zero
289 work( n+j ) = zero
290 END IF
291 ELSE
292 work( j ) = work( j )*sqrt( temp )
293 END IF
294 END IF
295 30 CONTINUE
296*
297 40 CONTINUE
298 END IF
299 RETURN
300*
301* End of SGEQPF
302*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqr2(m, n, a, lda, tau, work, info)
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition sgeqr2.f:130
integer function isamax(n, sx, incx)
ISAMAX
Definition isamax.f:71
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine slarf(side, m, n, v, incv, tau, c, ldc, work)
SLARF applies an elementary reflector to a general rectangular matrix.
Definition slarf.f:124
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
Definition slarfg.f:106
real(wp) function snrm2(n, x, incx)
SNRM2
Definition snrm2.f90:89
subroutine sswap(n, sx, incx, sy, incy)
SSWAP
Definition sswap.f:82
subroutine sorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sge...
Definition sorm2r.f:159
Here is the call graph for this function:
Here is the caller graph for this function: