LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine slarf | ( | character | side, |
integer | m, | ||
integer | n, | ||
real, dimension( * ) | v, | ||
integer | incv, | ||
real | tau, | ||
real, dimension( ldc, * ) | c, | ||
integer | ldc, | ||
real, dimension( * ) | work ) |
SLARF applies an elementary reflector to a general rectangular matrix.
Download SLARF + dependencies [TGZ] [ZIP] [TXT]
!> !> SLARF applies a real elementary reflector H to a real m by n matrix !> C, from either the left or the right. H is represented in the form !> !> H = I - tau * v * v**T !> !> where tau is a real scalar and v is a real vector. !> !> If tau = 0, then H is taken to be the unit matrix. !>
[in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': form H * C !> = 'R': form C * H !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix C. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix C. !> |
[in] | V | !> V is REAL array, dimension !> (1 + (M-1)*abs(INCV)) if SIDE = 'L' !> or (1 + (N-1)*abs(INCV)) if SIDE = 'R' !> The vector v in the representation of H. V is not used if !> TAU = 0. !> |
[in] | INCV | !> INCV is INTEGER !> The increment between elements of v. INCV <> 0. !> |
[in] | TAU | !> TAU is REAL !> The value tau in the representation of H. !> |
[in,out] | C | !> C is REAL array, dimension (LDC,N) !> On entry, the m by n matrix C. !> On exit, C is overwritten by the matrix H * C if SIDE = 'L', !> or C * H if SIDE = 'R'. !> |
[in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
[out] | WORK | !> WORK is REAL array, dimension !> (N) if SIDE = 'L' !> or (M) if SIDE = 'R' !> |
Definition at line 121 of file slarf.f.