LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlagv2 | ( | double precision, dimension( lda, * ) | a, |
integer | lda, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( 2 ) | alphar, | ||
double precision, dimension( 2 ) | alphai, | ||
double precision, dimension( 2 ) | beta, | ||
double precision | csl, | ||
double precision | snl, | ||
double precision | csr, | ||
double precision | snr ) |
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Download DLAGV2 + dependencies [TGZ] [ZIP] [TXT]
!> !> DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 !> matrix pencil (A,B) where B is upper triangular. This routine !> computes orthogonal (rotation) matrices given by CSL, SNL and CSR, !> SNR such that !> !> 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 !> types), then !> !> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] !> [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] !> !> [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] !> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], !> !> 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, !> then !> !> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] !> [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] !> !> [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] !> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] !> !> where b11 >= b22 > 0. !> !>
[in,out] | A | !> A is DOUBLE PRECISION array, dimension (LDA, 2) !> On entry, the 2 x 2 matrix A. !> On exit, A is overwritten by the ``A-part'' of the !> generalized Schur form. !> |
[in] | LDA | !> LDA is INTEGER !> THe leading dimension of the array A. LDA >= 2. !> |
[in,out] | B | !> B is DOUBLE PRECISION array, dimension (LDB, 2) !> On entry, the upper triangular 2 x 2 matrix B. !> On exit, B is overwritten by the ``B-part'' of the !> generalized Schur form. !> |
[in] | LDB | !> LDB is INTEGER !> THe leading dimension of the array B. LDB >= 2. !> |
[out] | ALPHAR | !> ALPHAR is DOUBLE PRECISION array, dimension (2) !> |
[out] | ALPHAI | !> ALPHAI is DOUBLE PRECISION array, dimension (2) !> |
[out] | BETA | !> BETA is DOUBLE PRECISION array, dimension (2) !> (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the !> pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may !> be zero. !> |
[out] | CSL | !> CSL is DOUBLE PRECISION !> The cosine of the left rotation matrix. !> |
[out] | SNL | !> SNL is DOUBLE PRECISION !> The sine of the left rotation matrix. !> |
[out] | CSR | !> CSR is DOUBLE PRECISION !> The cosine of the right rotation matrix. !> |
[out] | SNR | !> SNR is DOUBLE PRECISION !> The sine of the right rotation matrix. !> |
Definition at line 153 of file dlagv2.f.