LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ sggsvd()

subroutine sggsvd ( character jobu,
character jobv,
character jobq,
integer m,
integer n,
integer p,
integer k,
integer l,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) alpha,
real, dimension( * ) beta,
real, dimension( ldu, * ) u,
integer ldu,
real, dimension( ldv, * ) v,
integer ldv,
real, dimension( ldq, * ) q,
integer ldq,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

SGGSVD computes the singular value decomposition (SVD) for OTHER matrices

Download SGGSVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> This routine is deprecated and has been replaced by routine SGGSVD3. !> !> SGGSVD computes the generalized singular value decomposition (GSVD) !> of an M-by-N real matrix A and P-by-N real matrix B: !> !> U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R ) !> !> where U, V and Q are orthogonal matrices. !> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T, !> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and !> D2 are M-by-(K+L) and P-by-(K+L) matrices and of the !> following structures, respectively: !> !> If M-K-L >= 0, !> !> K L !> D1 = K ( I 0 ) !> L ( 0 C ) !> M-K-L ( 0 0 ) !> !> K L !> D2 = L ( 0 S ) !> P-L ( 0 0 ) !> !> N-K-L K L !> ( 0 R ) = K ( 0 R11 R12 ) !> L ( 0 0 R22 ) !> !> where !> !> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), !> S = diag( BETA(K+1), ... , BETA(K+L) ), !> C**2 + S**2 = I. !> !> R is stored in A(1:K+L,N-K-L+1:N) on exit. !> !> If M-K-L < 0, !> !> K M-K K+L-M !> D1 = K ( I 0 0 ) !> M-K ( 0 C 0 ) !> !> K M-K K+L-M !> D2 = M-K ( 0 S 0 ) !> K+L-M ( 0 0 I ) !> P-L ( 0 0 0 ) !> !> N-K-L K M-K K+L-M !> ( 0 R ) = K ( 0 R11 R12 R13 ) !> M-K ( 0 0 R22 R23 ) !> K+L-M ( 0 0 0 R33 ) !> !> where !> !> C = diag( ALPHA(K+1), ... , ALPHA(M) ), !> S = diag( BETA(K+1), ... , BETA(M) ), !> C**2 + S**2 = I. !> !> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored !> ( 0 R22 R23 ) !> in B(M-K+1:L,N+M-K-L+1:N) on exit. !> !> The routine computes C, S, R, and optionally the orthogonal !> transformation matrices U, V and Q. !> !> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of !> A and B implicitly gives the SVD of A*inv(B): !> A*inv(B) = U*(D1*inv(D2))*V**T. !> If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is !> also equal to the CS decomposition of A and B. Furthermore, the GSVD !> can be used to derive the solution of the eigenvalue problem: !> A**T*A x = lambda* B**T*B x. !> In some literature, the GSVD of A and B is presented in the form !> U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 ) !> where U and V are orthogonal and X is nonsingular, D1 and D2 are !> ``diagonal''. The former GSVD form can be converted to the latter !> form by taking the nonsingular matrix X as !> !> X = Q*( I 0 ) !> ( 0 inv(R) ). !>
Parameters
[in]JOBU
!> JOBU is CHARACTER*1 !> = 'U': Orthogonal matrix U is computed; !> = 'N': U is not computed. !>
[in]JOBV
!> JOBV is CHARACTER*1 !> = 'V': Orthogonal matrix V is computed; !> = 'N': V is not computed. !>
[in]JOBQ
!> JOBQ is CHARACTER*1 !> = 'Q': Orthogonal matrix Q is computed; !> = 'N': Q is not computed. !>
[in]M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !>
[in]P
!> P is INTEGER !> The number of rows of the matrix B. P >= 0. !>
[out]K
!> K is INTEGER !>
[out]L
!> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose. !> K + L = effective numerical rank of (A**T,B**T)**T. !>
[in,out]A
!> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A contains the triangular matrix R, or part of R. !> See Purpose for details. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
[in,out]B
!> B is REAL array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, B contains the triangular matrix R if M-K-L < 0. !> See Purpose for details. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !>
[out]ALPHA
!> ALPHA is REAL array, dimension (N) !>
[out]BETA
!> BETA is REAL array, dimension (N) !> !> On exit, ALPHA and BETA contain the generalized singular !> value pairs of A and B; !> ALPHA(1:K) = 1, !> BETA(1:K) = 0, !> and if M-K-L >= 0, !> ALPHA(K+1:K+L) = C, !> BETA(K+1:K+L) = S, !> or if M-K-L < 0, !> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 !> BETA(K+1:M) =S, BETA(M+1:K+L) =1 !> and !> ALPHA(K+L+1:N) = 0 !> BETA(K+L+1:N) = 0 !>
[out]U
!> U is REAL array, dimension (LDU,M) !> If JOBU = 'U', U contains the M-by-M orthogonal matrix U. !> If JOBU = 'N', U is not referenced. !>
[in]LDU
!> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !>
[out]V
!> V is REAL array, dimension (LDV,P) !> If JOBV = 'V', V contains the P-by-P orthogonal matrix V. !> If JOBV = 'N', V is not referenced. !>
[in]LDV
!> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !>
[out]Q
!> Q is REAL array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. !> If JOBQ = 'N', Q is not referenced. !>
[in]LDQ
!> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !>
[out]WORK
!> WORK is REAL array, !> dimension (max(3*N,M,P)+N) !>
[out]IWORK
!> IWORK is INTEGER array, dimension (N) !> On exit, IWORK stores the sorting information. More !> precisely, the following loop will sort ALPHA !> for I = K+1, min(M,K+L) !> swap ALPHA(I) and ALPHA(IWORK(I)) !> endfor !> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = 1, the Jacobi-type procedure failed to !> converge. For further details, see subroutine STGSJA. !>
Internal Parameters:
!> TOLA REAL !> TOLB REAL !> TOLA and TOLB are the thresholds to determine the effective !> rank of (A**T,B**T)**T. Generally, they are set to !> TOLA = MAX(M,N)*norm(A)*MACHEPS, !> TOLB = MAX(P,N)*norm(B)*MACHEPS. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 329 of file sggsvd.f.

332*
333* -- LAPACK driver routine --
334* -- LAPACK is a software package provided by Univ. of Tennessee, --
335* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
336*
337* .. Scalar Arguments ..
338 CHARACTER JOBQ, JOBU, JOBV
339 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
340* ..
341* .. Array Arguments ..
342 INTEGER IWORK( * )
343 REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
344 $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
345 $ V( LDV, * ), WORK( * )
346* ..
347*
348* =====================================================================
349*
350* .. Local Scalars ..
351 LOGICAL WANTQ, WANTU, WANTV
352 INTEGER I, IBND, ISUB, J, NCYCLE
353 REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
354* ..
355* .. External Functions ..
356 LOGICAL LSAME
357 REAL SLAMCH, SLANGE
358 EXTERNAL lsame, slamch, slange
359* ..
360* .. External Subroutines ..
361 EXTERNAL scopy, sggsvp, stgsja, xerbla
362* ..
363* .. Intrinsic Functions ..
364 INTRINSIC max, min
365* ..
366* .. Executable Statements ..
367*
368* Test the input parameters
369*
370 wantu = lsame( jobu, 'U' )
371 wantv = lsame( jobv, 'V' )
372 wantq = lsame( jobq, 'Q' )
373*
374 info = 0
375 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
376 info = -1
377 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
378 info = -2
379 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
380 info = -3
381 ELSE IF( m.LT.0 ) THEN
382 info = -4
383 ELSE IF( n.LT.0 ) THEN
384 info = -5
385 ELSE IF( p.LT.0 ) THEN
386 info = -6
387 ELSE IF( lda.LT.max( 1, m ) ) THEN
388 info = -10
389 ELSE IF( ldb.LT.max( 1, p ) ) THEN
390 info = -12
391 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
392 info = -16
393 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
394 info = -18
395 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
396 info = -20
397 END IF
398 IF( info.NE.0 ) THEN
399 CALL xerbla( 'SGGSVD', -info )
400 RETURN
401 END IF
402*
403* Compute the Frobenius norm of matrices A and B
404*
405 anorm = slange( '1', m, n, a, lda, work )
406 bnorm = slange( '1', p, n, b, ldb, work )
407*
408* Get machine precision and set up threshold for determining
409* the effective numerical rank of the matrices A and B.
410*
411 ulp = slamch( 'Precision' )
412 unfl = slamch( 'Safe Minimum' )
413 tola = max( m, n )*max( anorm, unfl )*ulp
414 tolb = max( p, n )*max( bnorm, unfl )*ulp
415*
416* Preprocessing
417*
418 CALL sggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
419 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, work,
420 $ work( n+1 ), info )
421*
422* Compute the GSVD of two upper "triangular" matrices
423*
424 CALL stgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
425 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
426 $ work, ncycle, info )
427*
428* Sort the singular values and store the pivot indices in IWORK
429* Copy ALPHA to WORK, then sort ALPHA in WORK
430*
431 CALL scopy( n, alpha, 1, work, 1 )
432 ibnd = min( l, m-k )
433 DO 20 i = 1, ibnd
434*
435* Scan for largest ALPHA(K+I)
436*
437 isub = i
438 smax = work( k+i )
439 DO 10 j = i + 1, ibnd
440 temp = work( k+j )
441 IF( temp.GT.smax ) THEN
442 isub = j
443 smax = temp
444 END IF
445 10 CONTINUE
446 IF( isub.NE.i ) THEN
447 work( k+isub ) = work( k+i )
448 work( k+i ) = smax
449 iwork( k+i ) = k + isub
450 ELSE
451 iwork( k+i ) = k + i
452 END IF
453 20 CONTINUE
454*
455 RETURN
456*
457* End of SGGSVD
458*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slange(norm, m, n, a, lda, work)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slange.f:112
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine stgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
STGSJA
Definition stgsja.f:376
subroutine sggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)
SGGSVP
Definition sggsvp.f:254
Here is the call graph for this function: