LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ chegvx()

subroutine chegvx ( integer  itype,
character  jobz,
character  range,
character  uplo,
integer  n,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldb, * )  b,
integer  ldb,
real  vl,
real  vu,
integer  il,
integer  iu,
real  abstol,
integer  m,
real, dimension( * )  w,
complex, dimension( ldz, * )  z,
integer  ldz,
complex, dimension( * )  work,
integer  lwork,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer, dimension( * )  ifail,
integer  info 
)

CHEGVX

Download CHEGVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CHEGVX computes selected eigenvalues, and optionally, eigenvectors
 of a complex generalized Hermitian-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 B are assumed to be Hermitian and B is also positive definite.
 Eigenvalues and eigenvectors can be selected by specifying either a
 range of values or a range of indices for the desired eigenvalues.
Parameters
[in]ITYPE
          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x
[in]JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
[in]RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
[in]N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA, N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.

          On exit,  the lower triangle (if UPLO='L') or the upper
          triangle (if UPLO='U') of A, including the diagonal, is
          destroyed.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in,out]B
          B is COMPLEX array, dimension (LDB, N)
          On entry, the Hermitian matrix B.  If UPLO = 'U', the
          leading N-by-N upper triangular part of B contains the
          upper triangular part of the matrix B.  If UPLO = 'L',
          the leading N-by-N lower triangular part of B contains
          the lower triangular part of the matrix B.

          On exit, if INFO <= N, the part of B containing the matrix is
          overwritten by the triangular factor U or L from the Cholesky
          factorization B = U**H*U or B = L*L**H.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]VL
          VL is REAL

          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
[in]VU
          VU is REAL

          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
[in]IL
          IL is INTEGER

          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
[in]IU
          IU is INTEGER

          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
[in]ABSTOL
          ABSTOL is REAL
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to

                  ABSTOL + EPS *   max( |a|,|b| ) ,

          where EPS is the machine precision.  If ABSTOL is less than
          or equal to zero, then  EPS*|T|  will be used in its place,
          where |T| is the 1-norm of the tridiagonal matrix obtained
          by reducing C to tridiagonal form, where C is the symmetric
          matrix of the standard symmetric problem to which the
          generalized problem is transformed.

          Eigenvalues will be computed most accurately when ABSTOL is
          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
          If this routine returns with INFO>0, indicating that some
          eigenvectors did not converge, try setting ABSTOL to
          2*SLAMCH('S').
[out]M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
[out]W
          W is REAL array, dimension (N)
          The first M elements contain the selected
          eigenvalues in ascending order.
[out]Z
          Z is COMPLEX array, dimension (LDZ, max(1,M))
          If JOBZ = 'N', then Z is not referenced.
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          The eigenvectors are normalized as follows:
          if ITYPE = 1 or 2, Z**T*B*Z = I;
          if ITYPE = 3, Z**T*inv(B)*Z = I.

          If an eigenvector fails to converge, then that column of Z
          contains the latest approximation to the eigenvector, and the
          index of the eigenvector is returned in IFAIL.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= max(1,2*N).
          For optimal efficiency, LWORK >= (NB+1)*N,
          where NB is the blocksize for CHETRD returned by ILAENV.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]RWORK
          RWORK is REAL array, dimension (7*N)
[out]IWORK
          IWORK is INTEGER array, dimension (5*N)
[out]IFAIL
          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  CPOTRF or CHEEVX returned an error code:
             <= N:  if INFO = i, CHEEVX failed to converge;
                    i eigenvectors failed to converge.  Their indices
                    are stored in array IFAIL.
             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    principal minor of order i of B is not positive.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 304 of file chegvx.f.

307*
308* -- LAPACK driver routine --
309* -- LAPACK is a software package provided by Univ. of Tennessee, --
310* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
311*
312* .. Scalar Arguments ..
313 CHARACTER JOBZ, RANGE, UPLO
314 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
315 REAL ABSTOL, VL, VU
316* ..
317* .. Array Arguments ..
318 INTEGER IFAIL( * ), IWORK( * )
319 REAL RWORK( * ), W( * )
320 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
321 $ Z( LDZ, * )
322* ..
323*
324* =====================================================================
325*
326* .. Parameters ..
327 COMPLEX CONE
328 parameter( cone = ( 1.0e+0, 0.0e+0 ) )
329* ..
330* .. Local Scalars ..
331 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
332 CHARACTER TRANS
333 INTEGER LWKOPT, NB
334* ..
335* .. External Functions ..
336 LOGICAL LSAME
337 INTEGER ILAENV
338 REAL SROUNDUP_LWORK
339 EXTERNAL ilaenv, lsame, sroundup_lwork
340* ..
341* .. External Subroutines ..
342 EXTERNAL cheevx, chegst, cpotrf, ctrmm, ctrsm, xerbla
343* ..
344* .. Intrinsic Functions ..
345 INTRINSIC max, min
346* ..
347* .. Executable Statements ..
348*
349* Test the input parameters.
350*
351 wantz = lsame( jobz, 'V' )
352 upper = lsame( uplo, 'U' )
353 alleig = lsame( range, 'A' )
354 valeig = lsame( range, 'V' )
355 indeig = lsame( range, 'I' )
356 lquery = ( lwork.EQ.-1 )
357*
358 info = 0
359 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
360 info = -1
361 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
362 info = -2
363 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
364 info = -3
365 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
366 info = -4
367 ELSE IF( n.LT.0 ) THEN
368 info = -5
369 ELSE IF( lda.LT.max( 1, n ) ) THEN
370 info = -7
371 ELSE IF( ldb.LT.max( 1, n ) ) THEN
372 info = -9
373 ELSE
374 IF( valeig ) THEN
375 IF( n.GT.0 .AND. vu.LE.vl )
376 $ info = -11
377 ELSE IF( indeig ) THEN
378 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
379 info = -12
380 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
381 info = -13
382 END IF
383 END IF
384 END IF
385 IF (info.EQ.0) THEN
386 IF (ldz.LT.1 .OR. (wantz .AND. ldz.LT.n)) THEN
387 info = -18
388 END IF
389 END IF
390*
391 IF( info.EQ.0 ) THEN
392 nb = ilaenv( 1, 'CHETRD', uplo, n, -1, -1, -1 )
393 lwkopt = max( 1, ( nb + 1 )*n )
394 work( 1 ) = sroundup_lwork(lwkopt)
395*
396 IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
397 info = -20
398 END IF
399 END IF
400*
401 IF( info.NE.0 ) THEN
402 CALL xerbla( 'CHEGVX', -info )
403 RETURN
404 ELSE IF( lquery ) THEN
405 RETURN
406 END IF
407*
408* Quick return if possible
409*
410 m = 0
411 IF( n.EQ.0 ) THEN
412 RETURN
413 END IF
414*
415* Form a Cholesky factorization of B.
416*
417 CALL cpotrf( uplo, n, b, ldb, info )
418 IF( info.NE.0 ) THEN
419 info = n + info
420 RETURN
421 END IF
422*
423* Transform problem to standard eigenvalue problem and solve.
424*
425 CALL chegst( itype, uplo, n, a, lda, b, ldb, info )
426 CALL cheevx( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
427 $ m, w, z, ldz, work, lwork, rwork, iwork, ifail,
428 $ info )
429*
430 IF( wantz ) THEN
431*
432* Backtransform eigenvectors to the original problem.
433*
434 IF( info.GT.0 )
435 $ m = info - 1
436 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
437*
438* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
439* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
440*
441 IF( upper ) THEN
442 trans = 'N'
443 ELSE
444 trans = 'C'
445 END IF
446*
447 CALL ctrsm( 'Left', uplo, trans, 'Non-unit', n, m, cone, b,
448 $ ldb, z, ldz )
449*
450 ELSE IF( itype.EQ.3 ) THEN
451*
452* For B*A*x=(lambda)*x;
453* backtransform eigenvectors: x = L*y or U**H*y
454*
455 IF( upper ) THEN
456 trans = 'C'
457 ELSE
458 trans = 'N'
459 END IF
460*
461 CALL ctrmm( 'Left', uplo, trans, 'Non-unit', n, m, cone, b,
462 $ ldb, z, ldz )
463 END IF
464 END IF
465*
466* Set WORK(1) to optimal complex workspace size.
467*
468 work( 1 ) = sroundup_lwork(lwkopt)
469*
470 RETURN
471*
472* End of CHEGVX
473*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
CHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition cheevx.f:259
subroutine chegst(itype, uplo, n, a, lda, b, ldb, info)
CHEGST
Definition chegst.f:128
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cpotrf(uplo, n, a, lda, info)
CPOTRF
Definition cpotrf.f:107
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRMM
Definition ctrmm.f:177
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180
Here is the call graph for this function:
Here is the caller graph for this function: