LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
chegvx.f
Go to the documentation of this file.
1*> \brief \b CHEGVX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CHEGVX + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegvx.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegvx.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegvx.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
20* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
21* LWORK, RWORK, IWORK, IFAIL, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBZ, RANGE, UPLO
25* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
26* REAL ABSTOL, VL, VU
27* ..
28* .. Array Arguments ..
29* INTEGER IFAIL( * ), IWORK( * )
30* REAL RWORK( * ), W( * )
31* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
32* $ Z( LDZ, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> CHEGVX computes selected eigenvalues, and optionally, eigenvectors
42*> of a complex generalized Hermitian-definite eigenproblem, of the form
43*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
44*> B are assumed to be Hermitian and B is also positive definite.
45*> Eigenvalues and eigenvectors can be selected by specifying either a
46*> range of values or a range of indices for the desired eigenvalues.
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] ITYPE
53*> \verbatim
54*> ITYPE is INTEGER
55*> Specifies the problem type to be solved:
56*> = 1: A*x = (lambda)*B*x
57*> = 2: A*B*x = (lambda)*x
58*> = 3: B*A*x = (lambda)*x
59*> \endverbatim
60*>
61*> \param[in] JOBZ
62*> \verbatim
63*> JOBZ is CHARACTER*1
64*> = 'N': Compute eigenvalues only;
65*> = 'V': Compute eigenvalues and eigenvectors.
66*> \endverbatim
67*>
68*> \param[in] RANGE
69*> \verbatim
70*> RANGE is CHARACTER*1
71*> = 'A': all eigenvalues will be found.
72*> = 'V': all eigenvalues in the half-open interval (VL,VU]
73*> will be found.
74*> = 'I': the IL-th through IU-th eigenvalues will be found.
75*> \endverbatim
76*>
77*> \param[in] UPLO
78*> \verbatim
79*> UPLO is CHARACTER*1
80*> = 'U': Upper triangles of A and B are stored;
81*> = 'L': Lower triangles of A and B are stored.
82*> \endverbatim
83*>
84*> \param[in] N
85*> \verbatim
86*> N is INTEGER
87*> The order of the matrices A and B. N >= 0.
88*> \endverbatim
89*>
90*> \param[in,out] A
91*> \verbatim
92*> A is COMPLEX array, dimension (LDA, N)
93*> On entry, the Hermitian matrix A. If UPLO = 'U', the
94*> leading N-by-N upper triangular part of A contains the
95*> upper triangular part of the matrix A. If UPLO = 'L',
96*> the leading N-by-N lower triangular part of A contains
97*> the lower triangular part of the matrix A.
98*>
99*> On exit, the lower triangle (if UPLO='L') or the upper
100*> triangle (if UPLO='U') of A, including the diagonal, is
101*> destroyed.
102*> \endverbatim
103*>
104*> \param[in] LDA
105*> \verbatim
106*> LDA is INTEGER
107*> The leading dimension of the array A. LDA >= max(1,N).
108*> \endverbatim
109*>
110*> \param[in,out] B
111*> \verbatim
112*> B is COMPLEX array, dimension (LDB, N)
113*> On entry, the Hermitian matrix B. If UPLO = 'U', the
114*> leading N-by-N upper triangular part of B contains the
115*> upper triangular part of the matrix B. If UPLO = 'L',
116*> the leading N-by-N lower triangular part of B contains
117*> the lower triangular part of the matrix B.
118*>
119*> On exit, if INFO <= N, the part of B containing the matrix is
120*> overwritten by the triangular factor U or L from the Cholesky
121*> factorization B = U**H*U or B = L*L**H.
122*> \endverbatim
123*>
124*> \param[in] LDB
125*> \verbatim
126*> LDB is INTEGER
127*> The leading dimension of the array B. LDB >= max(1,N).
128*> \endverbatim
129*>
130*> \param[in] VL
131*> \verbatim
132*> VL is REAL
133*>
134*> If RANGE='V', the lower bound of the interval to
135*> be searched for eigenvalues. VL < VU.
136*> Not referenced if RANGE = 'A' or 'I'.
137*> \endverbatim
138*>
139*> \param[in] VU
140*> \verbatim
141*> VU is REAL
142*>
143*> If RANGE='V', the upper bound of the interval to
144*> be searched for eigenvalues. VL < VU.
145*> Not referenced if RANGE = 'A' or 'I'.
146*> \endverbatim
147*>
148*> \param[in] IL
149*> \verbatim
150*> IL is INTEGER
151*>
152*> If RANGE='I', the index of the
153*> smallest eigenvalue to be returned.
154*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
155*> Not referenced if RANGE = 'A' or 'V'.
156*> \endverbatim
157*>
158*> \param[in] IU
159*> \verbatim
160*> IU is INTEGER
161*>
162*> If RANGE='I', the index of the
163*> largest eigenvalue to be returned.
164*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
165*> Not referenced if RANGE = 'A' or 'V'.
166*> \endverbatim
167*>
168*> \param[in] ABSTOL
169*> \verbatim
170*> ABSTOL is REAL
171*> The absolute error tolerance for the eigenvalues.
172*> An approximate eigenvalue is accepted as converged
173*> when it is determined to lie in an interval [a,b]
174*> of width less than or equal to
175*>
176*> ABSTOL + EPS * max( |a|,|b| ) ,
177*>
178*> where EPS is the machine precision. If ABSTOL is less than
179*> or equal to zero, then EPS*|T| will be used in its place,
180*> where |T| is the 1-norm of the tridiagonal matrix obtained
181*> by reducing C to tridiagonal form, where C is the symmetric
182*> matrix of the standard symmetric problem to which the
183*> generalized problem is transformed.
184*>
185*> Eigenvalues will be computed most accurately when ABSTOL is
186*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
187*> If this routine returns with INFO>0, indicating that some
188*> eigenvectors did not converge, try setting ABSTOL to
189*> 2*SLAMCH('S').
190*> \endverbatim
191*>
192*> \param[out] M
193*> \verbatim
194*> M is INTEGER
195*> The total number of eigenvalues found. 0 <= M <= N.
196*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
197*> \endverbatim
198*>
199*> \param[out] W
200*> \verbatim
201*> W is REAL array, dimension (N)
202*> The first M elements contain the selected
203*> eigenvalues in ascending order.
204*> \endverbatim
205*>
206*> \param[out] Z
207*> \verbatim
208*> Z is COMPLEX array, dimension (LDZ, max(1,M))
209*> If JOBZ = 'N', then Z is not referenced.
210*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
211*> contain the orthonormal eigenvectors of the matrix A
212*> corresponding to the selected eigenvalues, with the i-th
213*> column of Z holding the eigenvector associated with W(i).
214*> The eigenvectors are normalized as follows:
215*> if ITYPE = 1 or 2, Z**T*B*Z = I;
216*> if ITYPE = 3, Z**T*inv(B)*Z = I.
217*>
218*> If an eigenvector fails to converge, then that column of Z
219*> contains the latest approximation to the eigenvector, and the
220*> index of the eigenvector is returned in IFAIL.
221*> Note: the user must ensure that at least max(1,M) columns are
222*> supplied in the array Z; if RANGE = 'V', the exact value of M
223*> is not known in advance and an upper bound must be used.
224*> \endverbatim
225*>
226*> \param[in] LDZ
227*> \verbatim
228*> LDZ is INTEGER
229*> The leading dimension of the array Z. LDZ >= 1, and if
230*> JOBZ = 'V', LDZ >= max(1,N).
231*> \endverbatim
232*>
233*> \param[out] WORK
234*> \verbatim
235*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
236*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
237*> \endverbatim
238*>
239*> \param[in] LWORK
240*> \verbatim
241*> LWORK is INTEGER
242*> The length of the array WORK. LWORK >= max(1,2*N).
243*> For optimal efficiency, LWORK >= (NB+1)*N,
244*> where NB is the blocksize for CHETRD returned by ILAENV.
245*>
246*> If LWORK = -1, then a workspace query is assumed; the routine
247*> only calculates the optimal size of the WORK array, returns
248*> this value as the first entry of the WORK array, and no error
249*> message related to LWORK is issued by XERBLA.
250*> \endverbatim
251*>
252*> \param[out] RWORK
253*> \verbatim
254*> RWORK is REAL array, dimension (7*N)
255*> \endverbatim
256*>
257*> \param[out] IWORK
258*> \verbatim
259*> IWORK is INTEGER array, dimension (5*N)
260*> \endverbatim
261*>
262*> \param[out] IFAIL
263*> \verbatim
264*> IFAIL is INTEGER array, dimension (N)
265*> If JOBZ = 'V', then if INFO = 0, the first M elements of
266*> IFAIL are zero. If INFO > 0, then IFAIL contains the
267*> indices of the eigenvectors that failed to converge.
268*> If JOBZ = 'N', then IFAIL is not referenced.
269*> \endverbatim
270*>
271*> \param[out] INFO
272*> \verbatim
273*> INFO is INTEGER
274*> = 0: successful exit
275*> < 0: if INFO = -i, the i-th argument had an illegal value
276*> > 0: CPOTRF or CHEEVX returned an error code:
277*> <= N: if INFO = i, CHEEVX failed to converge;
278*> i eigenvectors failed to converge. Their indices
279*> are stored in array IFAIL.
280*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
281*> principal minor of order i of B is not positive.
282*> The factorization of B could not be completed and
283*> no eigenvalues or eigenvectors were computed.
284*> \endverbatim
285*
286* Authors:
287* ========
288*
289*> \author Univ. of Tennessee
290*> \author Univ. of California Berkeley
291*> \author Univ. of Colorado Denver
292*> \author NAG Ltd.
293*
294*> \ingroup hegvx
295*
296*> \par Contributors:
297* ==================
298*>
299*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
300*
301* =====================================================================
302 SUBROUTINE chegvx( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
303 $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
304 $ LWORK, RWORK, IWORK, IFAIL, INFO )
305*
306* -- LAPACK driver routine --
307* -- LAPACK is a software package provided by Univ. of Tennessee, --
308* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
309*
310* .. Scalar Arguments ..
311 CHARACTER JOBZ, RANGE, UPLO
312 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
313 REAL ABSTOL, VL, VU
314* ..
315* .. Array Arguments ..
316 INTEGER IFAIL( * ), IWORK( * )
317 REAL RWORK( * ), W( * )
318 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
319 $ z( ldz, * )
320* ..
321*
322* =====================================================================
323*
324* .. Parameters ..
325 COMPLEX CONE
326 PARAMETER ( CONE = ( 1.0e+0, 0.0e+0 ) )
327* ..
328* .. Local Scalars ..
329 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
330 CHARACTER TRANS
331 INTEGER LWKOPT, NB
332* ..
333* .. External Functions ..
334 LOGICAL LSAME
335 INTEGER ILAENV
336 REAL SROUNDUP_LWORK
337 EXTERNAL ilaenv, lsame, sroundup_lwork
338* ..
339* .. External Subroutines ..
340 EXTERNAL cheevx, chegst, cpotrf, ctrmm, ctrsm,
341 $ xerbla
342* ..
343* .. Intrinsic Functions ..
344 INTRINSIC max, min
345* ..
346* .. Executable Statements ..
347*
348* Test the input parameters.
349*
350 wantz = lsame( jobz, 'V' )
351 upper = lsame( uplo, 'U' )
352 alleig = lsame( range, 'A' )
353 valeig = lsame( range, 'V' )
354 indeig = lsame( range, 'I' )
355 lquery = ( lwork.EQ.-1 )
356*
357 info = 0
358 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
359 info = -1
360 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
361 info = -2
362 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
363 info = -3
364 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
365 info = -4
366 ELSE IF( n.LT.0 ) THEN
367 info = -5
368 ELSE IF( lda.LT.max( 1, n ) ) THEN
369 info = -7
370 ELSE IF( ldb.LT.max( 1, n ) ) THEN
371 info = -9
372 ELSE
373 IF( valeig ) THEN
374 IF( n.GT.0 .AND. vu.LE.vl )
375 $ info = -11
376 ELSE IF( indeig ) THEN
377 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
378 info = -12
379 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
380 info = -13
381 END IF
382 END IF
383 END IF
384 IF (info.EQ.0) THEN
385 IF (ldz.LT.1 .OR. (wantz .AND. ldz.LT.n)) THEN
386 info = -18
387 END IF
388 END IF
389*
390 IF( info.EQ.0 ) THEN
391 nb = ilaenv( 1, 'CHETRD', uplo, n, -1, -1, -1 )
392 lwkopt = max( 1, ( nb + 1 )*n )
393 work( 1 ) = sroundup_lwork(lwkopt)
394*
395 IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
396 info = -20
397 END IF
398 END IF
399*
400 IF( info.NE.0 ) THEN
401 CALL xerbla( 'CHEGVX', -info )
402 RETURN
403 ELSE IF( lquery ) THEN
404 RETURN
405 END IF
406*
407* Quick return if possible
408*
409 m = 0
410 IF( n.EQ.0 ) THEN
411 RETURN
412 END IF
413*
414* Form a Cholesky factorization of B.
415*
416 CALL cpotrf( uplo, n, b, ldb, info )
417 IF( info.NE.0 ) THEN
418 info = n + info
419 RETURN
420 END IF
421*
422* Transform problem to standard eigenvalue problem and solve.
423*
424 CALL chegst( itype, uplo, n, a, lda, b, ldb, info )
425 CALL cheevx( jobz, range, uplo, n, a, lda, vl, vu, il, iu,
426 $ abstol,
427 $ m, w, z, ldz, work, lwork, rwork, iwork, ifail,
428 $ info )
429*
430 IF( wantz ) THEN
431*
432* Backtransform eigenvectors to the original problem.
433*
434 IF( info.GT.0 )
435 $ m = info - 1
436 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
437*
438* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
439* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
440*
441 IF( upper ) THEN
442 trans = 'N'
443 ELSE
444 trans = 'C'
445 END IF
446*
447 CALL ctrsm( 'Left', uplo, trans, 'Non-unit', n, m, cone,
448 $ b,
449 $ ldb, z, ldz )
450*
451 ELSE IF( itype.EQ.3 ) THEN
452*
453* For B*A*x=(lambda)*x;
454* backtransform eigenvectors: x = L*y or U**H*y
455*
456 IF( upper ) THEN
457 trans = 'C'
458 ELSE
459 trans = 'N'
460 END IF
461*
462 CALL ctrmm( 'Left', uplo, trans, 'Non-unit', n, m, cone,
463 $ b,
464 $ ldb, z, ldz )
465 END IF
466 END IF
467*
468* Set WORK(1) to optimal complex workspace size.
469*
470 work( 1 ) = sroundup_lwork(lwkopt)
471*
472 RETURN
473*
474* End of CHEGVX
475*
476 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
CHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition cheevx.f:258
subroutine chegst(itype, uplo, n, a, lda, b, ldb, info)
CHEGST
Definition chegst.f:126
subroutine chegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
CHEGVX
Definition chegvx.f:305
subroutine cpotrf(uplo, n, a, lda, info)
CPOTRF
Definition cpotrf.f:105
subroutine ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRMM
Definition ctrmm.f:177
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180