LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
chegvx.f
Go to the documentation of this file.
1*> \brief \b CHEGVX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CHEGVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegvx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegvx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegvx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
22* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
23* LWORK, RWORK, IWORK, IFAIL, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBZ, RANGE, UPLO
27* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
28* REAL ABSTOL, VL, VU
29* ..
30* .. Array Arguments ..
31* INTEGER IFAIL( * ), IWORK( * )
32* REAL RWORK( * ), W( * )
33* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
34* $ Z( LDZ, * )
35* ..
36*
37*
38*> \par Purpose:
39* =============
40*>
41*> \verbatim
42*>
43*> CHEGVX computes selected eigenvalues, and optionally, eigenvectors
44*> of a complex generalized Hermitian-definite eigenproblem, of the form
45*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
46*> B are assumed to be Hermitian and B is also positive definite.
47*> Eigenvalues and eigenvectors can be selected by specifying either a
48*> range of values or a range of indices for the desired eigenvalues.
49*> \endverbatim
50*
51* Arguments:
52* ==========
53*
54*> \param[in] ITYPE
55*> \verbatim
56*> ITYPE is INTEGER
57*> Specifies the problem type to be solved:
58*> = 1: A*x = (lambda)*B*x
59*> = 2: A*B*x = (lambda)*x
60*> = 3: B*A*x = (lambda)*x
61*> \endverbatim
62*>
63*> \param[in] JOBZ
64*> \verbatim
65*> JOBZ is CHARACTER*1
66*> = 'N': Compute eigenvalues only;
67*> = 'V': Compute eigenvalues and eigenvectors.
68*> \endverbatim
69*>
70*> \param[in] RANGE
71*> \verbatim
72*> RANGE is CHARACTER*1
73*> = 'A': all eigenvalues will be found.
74*> = 'V': all eigenvalues in the half-open interval (VL,VU]
75*> will be found.
76*> = 'I': the IL-th through IU-th eigenvalues will be found.
77*> \endverbatim
78*>
79*> \param[in] UPLO
80*> \verbatim
81*> UPLO is CHARACTER*1
82*> = 'U': Upper triangles of A and B are stored;
83*> = 'L': Lower triangles of A and B are stored.
84*> \endverbatim
85*>
86*> \param[in] N
87*> \verbatim
88*> N is INTEGER
89*> The order of the matrices A and B. N >= 0.
90*> \endverbatim
91*>
92*> \param[in,out] A
93*> \verbatim
94*> A is COMPLEX array, dimension (LDA, N)
95*> On entry, the Hermitian matrix A. If UPLO = 'U', the
96*> leading N-by-N upper triangular part of A contains the
97*> upper triangular part of the matrix A. If UPLO = 'L',
98*> the leading N-by-N lower triangular part of A contains
99*> the lower triangular part of the matrix A.
100*>
101*> On exit, the lower triangle (if UPLO='L') or the upper
102*> triangle (if UPLO='U') of A, including the diagonal, is
103*> destroyed.
104*> \endverbatim
105*>
106*> \param[in] LDA
107*> \verbatim
108*> LDA is INTEGER
109*> The leading dimension of the array A. LDA >= max(1,N).
110*> \endverbatim
111*>
112*> \param[in,out] B
113*> \verbatim
114*> B is COMPLEX array, dimension (LDB, N)
115*> On entry, the Hermitian matrix B. If UPLO = 'U', the
116*> leading N-by-N upper triangular part of B contains the
117*> upper triangular part of the matrix B. If UPLO = 'L',
118*> the leading N-by-N lower triangular part of B contains
119*> the lower triangular part of the matrix B.
120*>
121*> On exit, if INFO <= N, the part of B containing the matrix is
122*> overwritten by the triangular factor U or L from the Cholesky
123*> factorization B = U**H*U or B = L*L**H.
124*> \endverbatim
125*>
126*> \param[in] LDB
127*> \verbatim
128*> LDB is INTEGER
129*> The leading dimension of the array B. LDB >= max(1,N).
130*> \endverbatim
131*>
132*> \param[in] VL
133*> \verbatim
134*> VL is REAL
135*>
136*> If RANGE='V', the lower bound of the interval to
137*> be searched for eigenvalues. VL < VU.
138*> Not referenced if RANGE = 'A' or 'I'.
139*> \endverbatim
140*>
141*> \param[in] VU
142*> \verbatim
143*> VU is REAL
144*>
145*> If RANGE='V', the upper bound of the interval to
146*> be searched for eigenvalues. VL < VU.
147*> Not referenced if RANGE = 'A' or 'I'.
148*> \endverbatim
149*>
150*> \param[in] IL
151*> \verbatim
152*> IL is INTEGER
153*>
154*> If RANGE='I', the index of the
155*> smallest eigenvalue to be returned.
156*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
157*> Not referenced if RANGE = 'A' or 'V'.
158*> \endverbatim
159*>
160*> \param[in] IU
161*> \verbatim
162*> IU is INTEGER
163*>
164*> If RANGE='I', the index of the
165*> largest eigenvalue to be returned.
166*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
167*> Not referenced if RANGE = 'A' or 'V'.
168*> \endverbatim
169*>
170*> \param[in] ABSTOL
171*> \verbatim
172*> ABSTOL is REAL
173*> The absolute error tolerance for the eigenvalues.
174*> An approximate eigenvalue is accepted as converged
175*> when it is determined to lie in an interval [a,b]
176*> of width less than or equal to
177*>
178*> ABSTOL + EPS * max( |a|,|b| ) ,
179*>
180*> where EPS is the machine precision. If ABSTOL is less than
181*> or equal to zero, then EPS*|T| will be used in its place,
182*> where |T| is the 1-norm of the tridiagonal matrix obtained
183*> by reducing C to tridiagonal form, where C is the symmetric
184*> matrix of the standard symmetric problem to which the
185*> generalized problem is transformed.
186*>
187*> Eigenvalues will be computed most accurately when ABSTOL is
188*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
189*> If this routine returns with INFO>0, indicating that some
190*> eigenvectors did not converge, try setting ABSTOL to
191*> 2*SLAMCH('S').
192*> \endverbatim
193*>
194*> \param[out] M
195*> \verbatim
196*> M is INTEGER
197*> The total number of eigenvalues found. 0 <= M <= N.
198*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
199*> \endverbatim
200*>
201*> \param[out] W
202*> \verbatim
203*> W is REAL array, dimension (N)
204*> The first M elements contain the selected
205*> eigenvalues in ascending order.
206*> \endverbatim
207*>
208*> \param[out] Z
209*> \verbatim
210*> Z is COMPLEX array, dimension (LDZ, max(1,M))
211*> If JOBZ = 'N', then Z is not referenced.
212*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
213*> contain the orthonormal eigenvectors of the matrix A
214*> corresponding to the selected eigenvalues, with the i-th
215*> column of Z holding the eigenvector associated with W(i).
216*> The eigenvectors are normalized as follows:
217*> if ITYPE = 1 or 2, Z**T*B*Z = I;
218*> if ITYPE = 3, Z**T*inv(B)*Z = I.
219*>
220*> If an eigenvector fails to converge, then that column of Z
221*> contains the latest approximation to the eigenvector, and the
222*> index of the eigenvector is returned in IFAIL.
223*> Note: the user must ensure that at least max(1,M) columns are
224*> supplied in the array Z; if RANGE = 'V', the exact value of M
225*> is not known in advance and an upper bound must be used.
226*> \endverbatim
227*>
228*> \param[in] LDZ
229*> \verbatim
230*> LDZ is INTEGER
231*> The leading dimension of the array Z. LDZ >= 1, and if
232*> JOBZ = 'V', LDZ >= max(1,N).
233*> \endverbatim
234*>
235*> \param[out] WORK
236*> \verbatim
237*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
238*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
239*> \endverbatim
240*>
241*> \param[in] LWORK
242*> \verbatim
243*> LWORK is INTEGER
244*> The length of the array WORK. LWORK >= max(1,2*N).
245*> For optimal efficiency, LWORK >= (NB+1)*N,
246*> where NB is the blocksize for CHETRD returned by ILAENV.
247*>
248*> If LWORK = -1, then a workspace query is assumed; the routine
249*> only calculates the optimal size of the WORK array, returns
250*> this value as the first entry of the WORK array, and no error
251*> message related to LWORK is issued by XERBLA.
252*> \endverbatim
253*>
254*> \param[out] RWORK
255*> \verbatim
256*> RWORK is REAL array, dimension (7*N)
257*> \endverbatim
258*>
259*> \param[out] IWORK
260*> \verbatim
261*> IWORK is INTEGER array, dimension (5*N)
262*> \endverbatim
263*>
264*> \param[out] IFAIL
265*> \verbatim
266*> IFAIL is INTEGER array, dimension (N)
267*> If JOBZ = 'V', then if INFO = 0, the first M elements of
268*> IFAIL are zero. If INFO > 0, then IFAIL contains the
269*> indices of the eigenvectors that failed to converge.
270*> If JOBZ = 'N', then IFAIL is not referenced.
271*> \endverbatim
272*>
273*> \param[out] INFO
274*> \verbatim
275*> INFO is INTEGER
276*> = 0: successful exit
277*> < 0: if INFO = -i, the i-th argument had an illegal value
278*> > 0: CPOTRF or CHEEVX returned an error code:
279*> <= N: if INFO = i, CHEEVX failed to converge;
280*> i eigenvectors failed to converge. Their indices
281*> are stored in array IFAIL.
282*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
283*> principal minor of order i of B is not positive.
284*> The factorization of B could not be completed and
285*> no eigenvalues or eigenvectors were computed.
286*> \endverbatim
287*
288* Authors:
289* ========
290*
291*> \author Univ. of Tennessee
292*> \author Univ. of California Berkeley
293*> \author Univ. of Colorado Denver
294*> \author NAG Ltd.
295*
296*> \ingroup hegvx
297*
298*> \par Contributors:
299* ==================
300*>
301*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
302*
303* =====================================================================
304 SUBROUTINE chegvx( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
305 $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
306 $ LWORK, RWORK, IWORK, IFAIL, INFO )
307*
308* -- LAPACK driver routine --
309* -- LAPACK is a software package provided by Univ. of Tennessee, --
310* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
311*
312* .. Scalar Arguments ..
313 CHARACTER JOBZ, RANGE, UPLO
314 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
315 REAL ABSTOL, VL, VU
316* ..
317* .. Array Arguments ..
318 INTEGER IFAIL( * ), IWORK( * )
319 REAL RWORK( * ), W( * )
320 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
321 $ z( ldz, * )
322* ..
323*
324* =====================================================================
325*
326* .. Parameters ..
327 COMPLEX CONE
328 PARAMETER ( CONE = ( 1.0e+0, 0.0e+0 ) )
329* ..
330* .. Local Scalars ..
331 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
332 CHARACTER TRANS
333 INTEGER LWKOPT, NB
334* ..
335* .. External Functions ..
336 LOGICAL LSAME
337 INTEGER ILAENV
338 REAL SROUNDUP_LWORK
339 EXTERNAL ilaenv, lsame, sroundup_lwork
340* ..
341* .. External Subroutines ..
342 EXTERNAL cheevx, chegst, cpotrf, ctrmm, ctrsm, xerbla
343* ..
344* .. Intrinsic Functions ..
345 INTRINSIC max, min
346* ..
347* .. Executable Statements ..
348*
349* Test the input parameters.
350*
351 wantz = lsame( jobz, 'V' )
352 upper = lsame( uplo, 'U' )
353 alleig = lsame( range, 'A' )
354 valeig = lsame( range, 'V' )
355 indeig = lsame( range, 'I' )
356 lquery = ( lwork.EQ.-1 )
357*
358 info = 0
359 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
360 info = -1
361 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
362 info = -2
363 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
364 info = -3
365 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
366 info = -4
367 ELSE IF( n.LT.0 ) THEN
368 info = -5
369 ELSE IF( lda.LT.max( 1, n ) ) THEN
370 info = -7
371 ELSE IF( ldb.LT.max( 1, n ) ) THEN
372 info = -9
373 ELSE
374 IF( valeig ) THEN
375 IF( n.GT.0 .AND. vu.LE.vl )
376 $ info = -11
377 ELSE IF( indeig ) THEN
378 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
379 info = -12
380 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
381 info = -13
382 END IF
383 END IF
384 END IF
385 IF (info.EQ.0) THEN
386 IF (ldz.LT.1 .OR. (wantz .AND. ldz.LT.n)) THEN
387 info = -18
388 END IF
389 END IF
390*
391 IF( info.EQ.0 ) THEN
392 nb = ilaenv( 1, 'CHETRD', uplo, n, -1, -1, -1 )
393 lwkopt = max( 1, ( nb + 1 )*n )
394 work( 1 ) = sroundup_lwork(lwkopt)
395*
396 IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
397 info = -20
398 END IF
399 END IF
400*
401 IF( info.NE.0 ) THEN
402 CALL xerbla( 'CHEGVX', -info )
403 RETURN
404 ELSE IF( lquery ) THEN
405 RETURN
406 END IF
407*
408* Quick return if possible
409*
410 m = 0
411 IF( n.EQ.0 ) THEN
412 RETURN
413 END IF
414*
415* Form a Cholesky factorization of B.
416*
417 CALL cpotrf( uplo, n, b, ldb, info )
418 IF( info.NE.0 ) THEN
419 info = n + info
420 RETURN
421 END IF
422*
423* Transform problem to standard eigenvalue problem and solve.
424*
425 CALL chegst( itype, uplo, n, a, lda, b, ldb, info )
426 CALL cheevx( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
427 $ m, w, z, ldz, work, lwork, rwork, iwork, ifail,
428 $ info )
429*
430 IF( wantz ) THEN
431*
432* Backtransform eigenvectors to the original problem.
433*
434 IF( info.GT.0 )
435 $ m = info - 1
436 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
437*
438* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
439* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
440*
441 IF( upper ) THEN
442 trans = 'N'
443 ELSE
444 trans = 'C'
445 END IF
446*
447 CALL ctrsm( 'Left', uplo, trans, 'Non-unit', n, m, cone, b,
448 $ ldb, z, ldz )
449*
450 ELSE IF( itype.EQ.3 ) THEN
451*
452* For B*A*x=(lambda)*x;
453* backtransform eigenvectors: x = L*y or U**H*y
454*
455 IF( upper ) THEN
456 trans = 'C'
457 ELSE
458 trans = 'N'
459 END IF
460*
461 CALL ctrmm( 'Left', uplo, trans, 'Non-unit', n, m, cone, b,
462 $ ldb, z, ldz )
463 END IF
464 END IF
465*
466* Set WORK(1) to optimal complex workspace size.
467*
468 work( 1 ) = sroundup_lwork(lwkopt)
469*
470 RETURN
471*
472* End of CHEGVX
473*
474 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
CHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition cheevx.f:259
subroutine chegst(itype, uplo, n, a, lda, b, ldb, info)
CHEGST
Definition chegst.f:128
subroutine chegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
CHEGVX
Definition chegvx.f:307
subroutine cpotrf(uplo, n, a, lda, info)
CPOTRF
Definition cpotrf.f:107
subroutine ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRMM
Definition ctrmm.f:177
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180