172
173
174
175
176
177
178 LOGICAL NOINIT, RIGHTV
179 INTEGER INFO, LDB, LDH, N
180 DOUBLE PRECISION BIGNUM, EPS3, SMLNUM, WI, WR
181
182
183 DOUBLE PRECISION B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
184 $ WORK( * )
185
186
187
188
189
190 DOUBLE PRECISION ZERO, ONE, TENTH
191 parameter( zero = 0.0d+0, one = 1.0d+0, tenth = 1.0d-1 )
192
193
194 CHARACTER NORMIN, TRANS
195 INTEGER I, I1, I2, I3, IERR, ITS, J
196 DOUBLE PRECISION ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
197 $ REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
198 $ W1, X, XI, XR, Y
199
200
201 INTEGER IDAMAX
202 DOUBLE PRECISION DASUM, DLAPY2, DNRM2
204
205
207
208
209 INTRINSIC abs, dble, max, sqrt
210
211
212
213 info = 0
214
215
216
217
218 rootn = sqrt( dble( n ) )
219 growto = tenth / rootn
220 nrmsml = max( one, eps3*rootn )*smlnum
221
222
223
224
225 DO 20 j = 1, n
226 DO 10 i = 1, j - 1
227 b( i, j ) = h( i, j )
228 10 CONTINUE
229 b( j, j ) = h( j, j ) - wr
230 20 CONTINUE
231
232 IF( wi.EQ.zero ) THEN
233
234
235
236 IF( noinit ) THEN
237
238
239
240 DO 30 i = 1, n
241 vr( i ) = eps3
242 30 CONTINUE
243 ELSE
244
245
246
247 vnorm =
dnrm2( n, vr, 1 )
248 CALL dscal( n, ( eps3*rootn ) / max( vnorm, nrmsml ), vr,
249 $ 1 )
250 END IF
251
252 IF( rightv ) THEN
253
254
255
256
257 DO 60 i = 1, n - 1
258 ei = h( i+1, i )
259 IF( abs( b( i, i ) ).LT.abs( ei ) ) THEN
260
261
262
263 x = b( i, i ) / ei
264 b( i, i ) = ei
265 DO 40 j = i + 1, n
266 temp = b( i+1, j )
267 b( i+1, j ) = b( i, j ) - x*temp
268 b( i, j ) = temp
269 40 CONTINUE
270 ELSE
271
272
273
274 IF( b( i, i ).EQ.zero )
275 $ b( i, i ) = eps3
276 x = ei / b( i, i )
277 IF( x.NE.zero ) THEN
278 DO 50 j = i + 1, n
279 b( i+1, j ) = b( i+1, j ) - x*b( i, j )
280 50 CONTINUE
281 END IF
282 END IF
283 60 CONTINUE
284 IF( b( n, n ).EQ.zero )
285 $ b( n, n ) = eps3
286
287 trans = 'N'
288
289 ELSE
290
291
292
293
294 DO 90 j = n, 2, -1
295 ej = h( j, j-1 )
296 IF( abs( b( j, j ) ).LT.abs( ej ) ) THEN
297
298
299
300 x = b( j, j ) / ej
301 b( j, j ) = ej
302 DO 70 i = 1, j - 1
303 temp = b( i, j-1 )
304 b( i, j-1 ) = b( i, j ) - x*temp
305 b( i, j ) = temp
306 70 CONTINUE
307 ELSE
308
309
310
311 IF( b( j, j ).EQ.zero )
312 $ b( j, j ) = eps3
313 x = ej / b( j, j )
314 IF( x.NE.zero ) THEN
315 DO 80 i = 1, j - 1
316 b( i, j-1 ) = b( i, j-1 ) - x*b( i, j )
317 80 CONTINUE
318 END IF
319 END IF
320 90 CONTINUE
321 IF( b( 1, 1 ).EQ.zero )
322 $ b( 1, 1 ) = eps3
323
324 trans = 'T'
325
326 END IF
327
328 normin = 'N'
329 DO 110 its = 1, n
330
331
332
333
334
335 CALL dlatrs(
'Upper', trans,
'Nonunit', normin, n, b, ldb,
336 $ vr, scale, work, ierr )
337 normin = 'Y'
338
339
340
341 vnorm =
dasum( n, vr, 1 )
342 IF( vnorm.GE.growto*scale )
343 $ GO TO 120
344
345
346
347 temp = eps3 / ( rootn+one )
348 vr( 1 ) = eps3
349 DO 100 i = 2, n
350 vr( i ) = temp
351 100 CONTINUE
352 vr( n-its+1 ) = vr( n-its+1 ) - eps3*rootn
353 110 CONTINUE
354
355
356
357 info = 1
358
359 120 CONTINUE
360
361
362
364 CALL dscal( n, one / abs( vr( i ) ), vr, 1 )
365 ELSE
366
367
368
369 IF( noinit ) THEN
370
371
372
373 DO 130 i = 1, n
374 vr( i ) = eps3
375 vi( i ) = zero
376 130 CONTINUE
377 ELSE
378
379
380
382 rec = ( eps3*rootn ) / max( norm, nrmsml )
383 CALL dscal( n, rec, vr, 1 )
384 CALL dscal( n, rec, vi, 1 )
385 END IF
386
387 IF( rightv ) THEN
388
389
390
391
392
393
394
395 b( 2, 1 ) = -wi
396 DO 140 i = 2, n
397 b( i+1, 1 ) = zero
398 140 CONTINUE
399
400 DO 170 i = 1, n - 1
401 absbii =
dlapy2( b( i, i ), b( i+1, i ) )
402 ei = h( i+1, i )
403 IF( absbii.LT.abs( ei ) ) THEN
404
405
406
407 xr = b( i, i ) / ei
408 xi = b( i+1, i ) / ei
409 b( i, i ) = ei
410 b( i+1, i ) = zero
411 DO 150 j = i + 1, n
412 temp = b( i+1, j )
413 b( i+1, j ) = b( i, j ) - xr*temp
414 b( j+1, i+1 ) = b( j+1, i ) - xi*temp
415 b( i, j ) = temp
416 b( j+1, i ) = zero
417 150 CONTINUE
418 b( i+2, i ) = -wi
419 b( i+1, i+1 ) = b( i+1, i+1 ) - xi*wi
420 b( i+2, i+1 ) = b( i+2, i+1 ) + xr*wi
421 ELSE
422
423
424
425 IF( absbii.EQ.zero ) THEN
426 b( i, i ) = eps3
427 b( i+1, i ) = zero
428 absbii = eps3
429 END IF
430 ei = ( ei / absbii ) / absbii
431 xr = b( i, i )*ei
432 xi = -b( i+1, i )*ei
433 DO 160 j = i + 1, n
434 b( i+1, j ) = b( i+1, j ) - xr*b( i, j ) +
435 $ xi*b( j+1, i )
436 b( j+1, i+1 ) = -xr*b( j+1, i ) - xi*b( i, j )
437 160 CONTINUE
438 b( i+2, i+1 ) = b( i+2, i+1 ) - wi
439 END IF
440
441
442
443 work( i ) =
dasum( n-i, b( i, i+1 ), ldb ) +
444 $
dasum( n-i, b( i+2, i ), 1 )
445 170 CONTINUE
446 IF( b( n, n ).EQ.zero .AND. b( n+1, n ).EQ.zero )
447 $ b( n, n ) = eps3
448 work( n ) = zero
449
450 i1 = n
451 i2 = 1
452 i3 = -1
453 ELSE
454
455
456
457
458
459
460
461 b( n+1, n ) = wi
462 DO 180 j = 1, n - 1
463 b( n+1, j ) = zero
464 180 CONTINUE
465
466 DO 210 j = n, 2, -1
467 ej = h( j, j-1 )
468 absbjj =
dlapy2( b( j, j ), b( j+1, j ) )
469 IF( absbjj.LT.abs( ej ) ) THEN
470
471
472
473 xr = b( j, j ) / ej
474 xi = b( j+1, j ) / ej
475 b( j, j ) = ej
476 b( j+1, j ) = zero
477 DO 190 i = 1, j - 1
478 temp = b( i, j-1 )
479 b( i, j-1 ) = b( i, j ) - xr*temp
480 b( j, i ) = b( j+1, i ) - xi*temp
481 b( i, j ) = temp
482 b( j+1, i ) = zero
483 190 CONTINUE
484 b( j+1, j-1 ) = wi
485 b( j-1, j-1 ) = b( j-1, j-1 ) + xi*wi
486 b( j, j-1 ) = b( j, j-1 ) - xr*wi
487 ELSE
488
489
490
491 IF( absbjj.EQ.zero ) THEN
492 b( j, j ) = eps3
493 b( j+1, j ) = zero
494 absbjj = eps3
495 END IF
496 ej = ( ej / absbjj ) / absbjj
497 xr = b( j, j )*ej
498 xi = -b( j+1, j )*ej
499 DO 200 i = 1, j - 1
500 b( i, j-1 ) = b( i, j-1 ) - xr*b( i, j ) +
501 $ xi*b( j+1, i )
502 b( j, i ) = -xr*b( j+1, i ) - xi*b( i, j )
503 200 CONTINUE
504 b( j, j-1 ) = b( j, j-1 ) + wi
505 END IF
506
507
508
509 work( j ) =
dasum( j-1, b( 1, j ), 1 ) +
510 $
dasum( j-1, b( j+1, 1 ), ldb )
511 210 CONTINUE
512 IF( b( 1, 1 ).EQ.zero .AND. b( 2, 1 ).EQ.zero )
513 $ b( 1, 1 ) = eps3
514 work( 1 ) = zero
515
516 i1 = 1
517 i2 = n
518 i3 = 1
519 END IF
520
521 DO 270 its = 1, n
522 scale = one
523 vmax = one
524 vcrit = bignum
525
526
527
528
529
530 DO 250 i = i1, i2, i3
531
532 IF( work( i ).GT.vcrit ) THEN
533 rec = one / vmax
534 CALL dscal( n, rec, vr, 1 )
535 CALL dscal( n, rec, vi, 1 )
536 scale = scale*rec
537 vmax = one
538 vcrit = bignum
539 END IF
540
541 xr = vr( i )
542 xi = vi( i )
543 IF( rightv ) THEN
544 DO 220 j = i + 1, n
545 xr = xr - b( i, j )*vr( j ) + b( j+1, i )*vi( j )
546 xi = xi - b( i, j )*vi( j ) - b( j+1, i )*vr( j )
547 220 CONTINUE
548 ELSE
549 DO 230 j = 1, i - 1
550 xr = xr - b( j, i )*vr( j ) + b( i+1, j )*vi( j )
551 xi = xi - b( j, i )*vi( j ) - b( i+1, j )*vr( j )
552 230 CONTINUE
553 END IF
554
555 w = abs( b( i, i ) ) + abs( b( i+1, i ) )
556 IF( w.GT.smlnum ) THEN
557 IF( w.LT.one ) THEN
558 w1 = abs( xr ) + abs( xi )
559 IF( w1.GT.w*bignum ) THEN
560 rec = one / w1
561 CALL dscal( n, rec, vr, 1 )
562 CALL dscal( n, rec, vi, 1 )
563 xr = vr( i )
564 xi = vi( i )
565 scale = scale*rec
566 vmax = vmax*rec
567 END IF
568 END IF
569
570
571
572 CALL dladiv( xr, xi, b( i, i ), b( i+1, i ), vr( i ),
573 $ vi( i ) )
574 vmax = max( abs( vr( i ) )+abs( vi( i ) ), vmax )
575 vcrit = bignum / vmax
576 ELSE
577 DO 240 j = 1, n
578 vr( j ) = zero
579 vi( j ) = zero
580 240 CONTINUE
581 vr( i ) = one
582 vi( i ) = one
583 scale = zero
584 vmax = one
585 vcrit = bignum
586 END IF
587 250 CONTINUE
588
589
590
592 IF( vnorm.GE.growto*scale )
593 $ GO TO 280
594
595
596
597 y = eps3 / ( rootn+one )
598 vr( 1 ) = eps3
599 vi( 1 ) = zero
600
601 DO 260 i = 2, n
602 vr( i ) = y
603 vi( i ) = zero
604 260 CONTINUE
605 vr( n-its+1 ) = vr( n-its+1 ) - eps3*rootn
606 270 CONTINUE
607
608
609
610 info = 1
611
612 280 CONTINUE
613
614
615
616 vnorm = zero
617 DO 290 i = 1, n
618 vnorm = max( vnorm, abs( vr( i ) )+abs( vi( i ) ) )
619 290 CONTINUE
620 CALL dscal( n, one / vnorm, vr, 1 )
621 CALL dscal( n, one / vnorm, vi, 1 )
622
623 END IF
624
625 RETURN
626
627
628
double precision function dasum(n, dx, incx)
DASUM
integer function idamax(n, dx, incx)
IDAMAX
subroutine dladiv(a, b, c, d, p, q)
DLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
double precision function dlapy2(x, y)
DLAPY2 returns sqrt(x2+y2).
subroutine dlatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
DLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
real(wp) function dnrm2(n, x, incx)
DNRM2
subroutine dscal(n, da, dx, incx)
DSCAL