166 SUBROUTINE slahrd( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
173 INTEGER K, LDA, LDT, LDY, N, NB
176 REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
184 parameter( zero = 0.0e+0, one = 1.0e+0 )
210 CALL sgemv(
'No transpose', n, i-1, -one, y, ldy,
211 $ a( k+i-1, 1 ), lda, one, a( 1, i ), 1 )
223 CALL scopy( i-1, a( k+1, i ), 1, t( 1, nb ), 1 )
224 CALL strmv(
'Lower',
'Transpose',
'Unit', i-1, a( k+1, 1 ),
225 $ lda, t( 1, nb ), 1 )
229 CALL sgemv(
'Transpose', n-k-i+1, i-1, one, a( k+i, 1 ),
230 $ lda, a( k+i, i ), 1, one, t( 1, nb ), 1 )
234 CALL strmv(
'Upper',
'Transpose',
'Non-unit', i-1, t, ldt,
239 CALL sgemv(
'No transpose', n-k-i+1, i-1, -one, a( k+i, 1 ),
240 $ lda, t( 1, nb ), 1, one, a( k+i, i ), 1 )
244 CALL strmv(
'Lower',
'No transpose',
'Unit', i-1,
245 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
246 CALL saxpy( i-1, -one, t( 1, nb ), 1, a( k+1, i ), 1 )
254 CALL slarfg( n-k-i+1, a( k+i, i ), a( min( k+i+1, n ), i ), 1,
261 CALL sgemv(
'No transpose', n, n-k-i+1, one, a( 1, i+1 ), lda,
262 $ a( k+i, i ), 1, zero, y( 1, i ), 1 )
263 CALL sgemv(
'Transpose', n-k-i+1, i-1, one, a( k+i, 1 ), lda,
264 $ a( k+i, i ), 1, zero, t( 1, i ), 1 )
265 CALL sgemv(
'No transpose', n, i-1, -one, y, ldy, t( 1, i ), 1,
266 $ one, y( 1, i ), 1 )
267 CALL sscal( n, tau( i ), y( 1, i ), 1 )
271 CALL sscal( i-1, -tau( i ), t( 1, i ), 1 )
272 CALL strmv(
'Upper',
'No transpose',
'Non-unit', i-1, t, ldt,
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
subroutine sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SGEMV
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
subroutine sscal(n, sa, sx, incx)
SSCAL
subroutine strmv(uplo, trans, diag, n, a, lda, x, incx)
STRMV
subroutine slahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
SLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th...