LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ slahrd()

subroutine slahrd ( integer n,
integer k,
integer nb,
real, dimension( lda, * ) a,
integer lda,
real, dimension( nb ) tau,
real, dimension( ldt, nb ) t,
integer ldt,
real, dimension( ldy, nb ) y,
integer ldy )

SLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.

Download SLAHRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> This routine is deprecated and has been replaced by routine SLAHR2. !> !> SLAHRD reduces the first NB columns of a real general n-by-(n-k+1) !> matrix A so that elements below the k-th subdiagonal are zero. The !> reduction is performed by an orthogonal similarity transformation !> Q**T * A * Q. The routine returns the matrices V and T which determine !> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. !>
Parameters
[in]N
!> N is INTEGER !> The order of the matrix A. !>
[in]K
!> K is INTEGER !> The offset for the reduction. Elements below the k-th !> subdiagonal in the first NB columns are reduced to zero. !>
[in]NB
!> NB is INTEGER !> The number of columns to be reduced. !>
[in,out]A
!> A is REAL array, dimension (LDA,N-K+1) !> On entry, the n-by-(n-k+1) general matrix A. !> On exit, the elements on and above the k-th subdiagonal in !> the first NB columns are overwritten with the corresponding !> elements of the reduced matrix; the elements below the k-th !> subdiagonal, with the array TAU, represent the matrix Q as a !> product of elementary reflectors. The other columns of A are !> unchanged. See Further Details. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
[out]TAU
!> TAU is REAL array, dimension (NB) !> The scalar factors of the elementary reflectors. See Further !> Details. !>
[out]T
!> T is REAL array, dimension (LDT,NB) !> The upper triangular matrix T. !>
[in]LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !>
[out]Y
!> Y is REAL array, dimension (LDY,NB) !> The n-by-nb matrix Y. !>
[in]LDY
!> LDY is INTEGER !> The leading dimension of the array Y. LDY >= N. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of nb elementary reflectors !> !> Q = H(1) H(2) . . . H(nb). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**T !> !> where tau is a real scalar, and v is a real vector with !> v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in !> A(i+k+1:n,i), and tau in TAU(i). !> !> The elements of the vectors v together form the (n-k+1)-by-nb matrix !> V which is needed, with T and Y, to apply the transformation to the !> unreduced part of the matrix, using an update of the form: !> A := (I - V*T*V**T) * (A - Y*V**T). !> !> The contents of A on exit are illustrated by the following example !> with n = 7, k = 3 and nb = 2: !> !> ( a h a a a ) !> ( a h a a a ) !> ( a h a a a ) !> ( h h a a a ) !> ( v1 h a a a ) !> ( v1 v2 a a a ) !> ( v1 v2 a a a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i). !>

Definition at line 164 of file slahrd.f.

165*
166* -- LAPACK auxiliary routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 INTEGER K, LDA, LDT, LDY, N, NB
172* ..
173* .. Array Arguments ..
174 REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
175 $ Y( LDY, NB )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 REAL ZERO, ONE
182 parameter( zero = 0.0e+0, one = 1.0e+0 )
183* ..
184* .. Local Scalars ..
185 INTEGER I
186 REAL EI
187* ..
188* .. External Subroutines ..
189 EXTERNAL saxpy, scopy, sgemv, slarfg, sscal, strmv
190* ..
191* .. Intrinsic Functions ..
192 INTRINSIC min
193* ..
194* .. Executable Statements ..
195*
196* Quick return if possible
197*
198 IF( n.LE.1 )
199 $ RETURN
200*
201 DO 10 i = 1, nb
202 IF( i.GT.1 ) THEN
203*
204* Update A(1:n,i)
205*
206* Compute i-th column of A - Y * V**T
207*
208 CALL sgemv( 'No transpose', n, i-1, -one, y, ldy,
209 $ a( k+i-1, 1 ), lda, one, a( 1, i ), 1 )
210*
211* Apply I - V * T**T * V**T to this column (call it b) from the
212* left, using the last column of T as workspace
213*
214* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
215* ( V2 ) ( b2 )
216*
217* where V1 is unit lower triangular
218*
219* w := V1**T * b1
220*
221 CALL scopy( i-1, a( k+1, i ), 1, t( 1, nb ), 1 )
222 CALL strmv( 'Lower', 'Transpose', 'Unit', i-1,
223 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
224*
225* w := w + V2**T *b2
226*
227 CALL sgemv( 'Transpose', n-k-i+1, i-1, one, a( k+i, 1 ),
228 $ lda, a( k+i, i ), 1, one, t( 1, nb ), 1 )
229*
230* w := T**T *w
231*
232 CALL strmv( 'Upper', 'Transpose', 'Non-unit', i-1, t,
233 $ ldt, t( 1, nb ), 1 )
234*
235* b2 := b2 - V2*w
236*
237 CALL sgemv( 'No transpose', n-k-i+1, i-1, -one,
238 $ a( k+i, 1 ), lda, t( 1, nb ), 1, one,
239 $ a( k+i, i ), 1 )
240*
241* b1 := b1 - V1*w
242*
243 CALL strmv( 'Lower', 'No transpose', 'Unit', i-1,
244 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
245 CALL saxpy( i-1, -one, t( 1, nb ), 1, a( k+1, i ), 1 )
246*
247 a( k+i-1, i-1 ) = ei
248 END IF
249*
250* Generate the elementary reflector H(i) to annihilate
251* A(k+i+1:n,i)
252*
253 CALL slarfg( n-k-i+1, a( k+i, i ), a( min( k+i+1, n ), i ),
254 $ 1, tau( i ) )
255 ei = a( k+i, i )
256 a( k+i, i ) = one
257*
258* Compute Y(1:n,i)
259*
260 CALL sgemv( 'No transpose', n, n-k-i+1, one, a( 1, i+1 ),
261 $ lda, a( k+i, i ), 1, zero, y( 1, i ), 1 )
262 CALL sgemv( 'Transpose', n-k-i+1, i-1, one, a( k+i, 1 ),
263 $ lda, a( k+i, i ), 1, zero, t( 1, i ), 1 )
264 CALL sgemv( 'No transpose', n, i-1, -one, y, ldy, t( 1, i ),
265 $ 1, one, y( 1, i ), 1 )
266 CALL sscal( n, tau( i ), y( 1, i ), 1 )
267*
268* Compute T(1:i,i)
269*
270 CALL sscal( i-1, -tau( i ), t( 1, i ), 1 )
271 CALL strmv( 'Upper', 'No transpose', 'Non-unit', i-1, t,
272 $ ldt, t( 1, i ), 1 )
273 t( i, i ) = tau( i )
274*
275 10 CONTINUE
276 a( k+nb, nb ) = ei
277*
278 RETURN
279*
280* End of SLAHRD
281*
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SGEMV
Definition sgemv.f:158
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
Definition slarfg.f:104
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine strmv(uplo, trans, diag, n, a, lda, x, incx)
STRMV
Definition strmv.f:147
Here is the call graph for this function: