LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sgegs.f
Go to the documentation of this file.
1*> \brief <b> SGEGS computes the eigenvalues, real Schur form, and, optionally, the left and/or right Schur vectors of a real matrix pair (A,B)</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SGEGS + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegs.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegs.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegs.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
22* ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
23* LWORK, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBVSL, JOBVSR
27* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
28* ..
29* .. Array Arguments ..
30* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
31* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
32* $ VSR( LDVSR, * ), WORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> This routine is deprecated and has been replaced by routine SGGES.
42*>
43*> SGEGS computes the eigenvalues, real Schur form, and, optionally,
44*> left and or/right Schur vectors of a real matrix pair (A,B).
45*> Given two square matrices A and B, the generalized real Schur
46*> factorization has the form
47*>
48*> A = Q*S*Z**T, B = Q*T*Z**T
49*>
50*> where Q and Z are orthogonal matrices, T is upper triangular, and S
51*> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
52*> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
53*> of eigenvalues of (A,B). The columns of Q are the left Schur vectors
54*> and the columns of Z are the right Schur vectors.
55*>
56*> If only the eigenvalues of (A,B) are needed, the driver routine
57*> SGEGV should be used instead. See SGEGV for a description of the
58*> eigenvalues of the generalized nonsymmetric eigenvalue problem
59*> (GNEP).
60*> \endverbatim
61*
62* Arguments:
63* ==========
64*
65*> \param[in] JOBVSL
66*> \verbatim
67*> JOBVSL is CHARACTER*1
68*> = 'N': do not compute the left Schur vectors;
69*> = 'V': compute the left Schur vectors (returned in VSL).
70*> \endverbatim
71*>
72*> \param[in] JOBVSR
73*> \verbatim
74*> JOBVSR is CHARACTER*1
75*> = 'N': do not compute the right Schur vectors;
76*> = 'V': compute the right Schur vectors (returned in VSR).
77*> \endverbatim
78*>
79*> \param[in] N
80*> \verbatim
81*> N is INTEGER
82*> The order of the matrices A, B, VSL, and VSR. N >= 0.
83*> \endverbatim
84*>
85*> \param[in,out] A
86*> \verbatim
87*> A is REAL array, dimension (LDA, N)
88*> On entry, the matrix A.
89*> On exit, the upper quasi-triangular matrix S from the
90*> generalized real Schur factorization.
91*> \endverbatim
92*>
93*> \param[in] LDA
94*> \verbatim
95*> LDA is INTEGER
96*> The leading dimension of A. LDA >= max(1,N).
97*> \endverbatim
98*>
99*> \param[in,out] B
100*> \verbatim
101*> B is REAL array, dimension (LDB, N)
102*> On entry, the matrix B.
103*> On exit, the upper triangular matrix T from the generalized
104*> real Schur factorization.
105*> \endverbatim
106*>
107*> \param[in] LDB
108*> \verbatim
109*> LDB is INTEGER
110*> The leading dimension of B. LDB >= max(1,N).
111*> \endverbatim
112*>
113*> \param[out] ALPHAR
114*> \verbatim
115*> ALPHAR is REAL array, dimension (N)
116*> The real parts of each scalar alpha defining an eigenvalue
117*> of GNEP.
118*> \endverbatim
119*>
120*> \param[out] ALPHAI
121*> \verbatim
122*> ALPHAI is REAL array, dimension (N)
123*> The imaginary parts of each scalar alpha defining an
124*> eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
125*> eigenvalue is real; if positive, then the j-th and (j+1)-st
126*> eigenvalues are a complex conjugate pair, with
127*> ALPHAI(j+1) = -ALPHAI(j).
128*> \endverbatim
129*>
130*> \param[out] BETA
131*> \verbatim
132*> BETA is REAL array, dimension (N)
133*> The scalars beta that define the eigenvalues of GNEP.
134*> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
135*> beta = BETA(j) represent the j-th eigenvalue of the matrix
136*> pair (A,B), in one of the forms lambda = alpha/beta or
137*> mu = beta/alpha. Since either lambda or mu may overflow,
138*> they should not, in general, be computed.
139*> \endverbatim
140*>
141*> \param[out] VSL
142*> \verbatim
143*> VSL is REAL array, dimension (LDVSL,N)
144*> If JOBVSL = 'V', the matrix of left Schur vectors Q.
145*> Not referenced if JOBVSL = 'N'.
146*> \endverbatim
147*>
148*> \param[in] LDVSL
149*> \verbatim
150*> LDVSL is INTEGER
151*> The leading dimension of the matrix VSL. LDVSL >=1, and
152*> if JOBVSL = 'V', LDVSL >= N.
153*> \endverbatim
154*>
155*> \param[out] VSR
156*> \verbatim
157*> VSR is REAL array, dimension (LDVSR,N)
158*> If JOBVSR = 'V', the matrix of right Schur vectors Z.
159*> Not referenced if JOBVSR = 'N'.
160*> \endverbatim
161*>
162*> \param[in] LDVSR
163*> \verbatim
164*> LDVSR is INTEGER
165*> The leading dimension of the matrix VSR. LDVSR >= 1, and
166*> if JOBVSR = 'V', LDVSR >= N.
167*> \endverbatim
168*>
169*> \param[out] WORK
170*> \verbatim
171*> WORK is REAL array, dimension (MAX(1,LWORK))
172*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
173*> \endverbatim
174*>
175*> \param[in] LWORK
176*> \verbatim
177*> LWORK is INTEGER
178*> The dimension of the array WORK. LWORK >= max(1,4*N).
179*> For good performance, LWORK must generally be larger.
180*> To compute the optimal value of LWORK, call ILAENV to get
181*> blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
182*> NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR
183*> The optimal LWORK is 2*N + N*(NB+1).
184*>
185*> If LWORK = -1, then a workspace query is assumed; the routine
186*> only calculates the optimal size of the WORK array, returns
187*> this value as the first entry of the WORK array, and no error
188*> message related to LWORK is issued by XERBLA.
189*> \endverbatim
190*>
191*> \param[out] INFO
192*> \verbatim
193*> INFO is INTEGER
194*> = 0: successful exit
195*> < 0: if INFO = -i, the i-th argument had an illegal value.
196*> = 1,...,N:
197*> The QZ iteration failed. (A,B) are not in Schur
198*> form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
199*> be correct for j=INFO+1,...,N.
200*> > N: errors that usually indicate LAPACK problems:
201*> =N+1: error return from SGGBAL
202*> =N+2: error return from SGEQRF
203*> =N+3: error return from SORMQR
204*> =N+4: error return from SORGQR
205*> =N+5: error return from SGGHRD
206*> =N+6: error return from SHGEQZ (other than failed
207*> iteration)
208*> =N+7: error return from SGGBAK (computing VSL)
209*> =N+8: error return from SGGBAK (computing VSR)
210*> =N+9: error return from SLASCL (various places)
211*> \endverbatim
212*
213* Authors:
214* ========
215*
216*> \author Univ. of Tennessee
217*> \author Univ. of California Berkeley
218*> \author Univ. of Colorado Denver
219*> \author NAG Ltd.
220*
221*> \ingroup realGEeigen
222*
223* =====================================================================
224 SUBROUTINE sgegs( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
225 $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
226 $ LWORK, INFO )
227*
228* -- LAPACK driver routine --
229* -- LAPACK is a software package provided by Univ. of Tennessee, --
230* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
231*
232* .. Scalar Arguments ..
233 CHARACTER JOBVSL, JOBVSR
234 INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
235* ..
236* .. Array Arguments ..
237 REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
238 $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
239 $ vsr( ldvsr, * ), work( * )
240* ..
241*
242* =====================================================================
243*
244* .. Parameters ..
245 REAL ZERO, ONE
246 PARAMETER ( ZERO = 0.0e0, one = 1.0e0 )
247* ..
248* .. Local Scalars ..
249 LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
250 INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT,
251 $ ilo, iright, irows, itau, iwork, lopt, lwkmin,
252 $ lwkopt, nb, nb1, nb2, nb3
253 REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
254 $ SAFMIN, SMLNUM
255* ..
256* .. External Subroutines ..
257 EXTERNAL sgeqrf, sggbak, sggbal, sgghrd, shgeqz, slacpy,
259* ..
260* .. External Functions ..
261 LOGICAL LSAME
262 INTEGER ILAENV
263 REAL SLAMCH, SLANGE
264 EXTERNAL ilaenv, lsame, slamch, slange
265* ..
266* .. Intrinsic Functions ..
267 INTRINSIC int, max
268* ..
269* .. Executable Statements ..
270*
271* Decode the input arguments
272*
273 IF( lsame( jobvsl, 'N' ) ) THEN
274 ijobvl = 1
275 ilvsl = .false.
276 ELSE IF( lsame( jobvsl, 'V' ) ) THEN
277 ijobvl = 2
278 ilvsl = .true.
279 ELSE
280 ijobvl = -1
281 ilvsl = .false.
282 END IF
283*
284 IF( lsame( jobvsr, 'N' ) ) THEN
285 ijobvr = 1
286 ilvsr = .false.
287 ELSE IF( lsame( jobvsr, 'V' ) ) THEN
288 ijobvr = 2
289 ilvsr = .true.
290 ELSE
291 ijobvr = -1
292 ilvsr = .false.
293 END IF
294*
295* Test the input arguments
296*
297 lwkmin = max( 4*n, 1 )
298 lwkopt = lwkmin
299 work( 1 ) = lwkopt
300 lquery = ( lwork.EQ.-1 )
301 info = 0
302 IF( ijobvl.LE.0 ) THEN
303 info = -1
304 ELSE IF( ijobvr.LE.0 ) THEN
305 info = -2
306 ELSE IF( n.LT.0 ) THEN
307 info = -3
308 ELSE IF( lda.LT.max( 1, n ) ) THEN
309 info = -5
310 ELSE IF( ldb.LT.max( 1, n ) ) THEN
311 info = -7
312 ELSE IF( ldvsl.LT.1 .OR. ( ilvsl .AND. ldvsl.LT.n ) ) THEN
313 info = -12
314 ELSE IF( ldvsr.LT.1 .OR. ( ilvsr .AND. ldvsr.LT.n ) ) THEN
315 info = -14
316 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
317 info = -16
318 END IF
319*
320 IF( info.EQ.0 ) THEN
321 nb1 = ilaenv( 1, 'SGEQRF', ' ', n, n, -1, -1 )
322 nb2 = ilaenv( 1, 'SORMQR', ' ', n, n, n, -1 )
323 nb3 = ilaenv( 1, 'SORGQR', ' ', n, n, n, -1 )
324 nb = max( nb1, nb2, nb3 )
325 lopt = 2*n+n*(nb+1)
326 work( 1 ) = lopt
327 END IF
328*
329 IF( info.NE.0 ) THEN
330 CALL xerbla( 'SGEGS ', -info )
331 RETURN
332 ELSE IF( lquery ) THEN
333 RETURN
334 END IF
335*
336* Quick return if possible
337*
338 IF( n.EQ.0 )
339 $ RETURN
340*
341* Get machine constants
342*
343 eps = slamch( 'E' )*slamch( 'B' )
344 safmin = slamch( 'S' )
345 smlnum = n*safmin / eps
346 bignum = one / smlnum
347*
348* Scale A if max element outside range [SMLNUM,BIGNUM]
349*
350 anrm = slange( 'M', n, n, a, lda, work )
351 ilascl = .false.
352 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
353 anrmto = smlnum
354 ilascl = .true.
355 ELSE IF( anrm.GT.bignum ) THEN
356 anrmto = bignum
357 ilascl = .true.
358 END IF
359*
360 IF( ilascl ) THEN
361 CALL slascl( 'G', -1, -1, anrm, anrmto, n, n, a, lda, iinfo )
362 IF( iinfo.NE.0 ) THEN
363 info = n + 9
364 RETURN
365 END IF
366 END IF
367*
368* Scale B if max element outside range [SMLNUM,BIGNUM]
369*
370 bnrm = slange( 'M', n, n, b, ldb, work )
371 ilbscl = .false.
372 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
373 bnrmto = smlnum
374 ilbscl = .true.
375 ELSE IF( bnrm.GT.bignum ) THEN
376 bnrmto = bignum
377 ilbscl = .true.
378 END IF
379*
380 IF( ilbscl ) THEN
381 CALL slascl( 'G', -1, -1, bnrm, bnrmto, n, n, b, ldb, iinfo )
382 IF( iinfo.NE.0 ) THEN
383 info = n + 9
384 RETURN
385 END IF
386 END IF
387*
388* Permute the matrix to make it more nearly triangular
389* Workspace layout: (2*N words -- "work..." not actually used)
390* left_permutation, right_permutation, work...
391*
392 ileft = 1
393 iright = n + 1
394 iwork = iright + n
395 CALL sggbal( 'P', n, a, lda, b, ldb, ilo, ihi, work( ileft ),
396 $ work( iright ), work( iwork ), iinfo )
397 IF( iinfo.NE.0 ) THEN
398 info = n + 1
399 GO TO 10
400 END IF
401*
402* Reduce B to triangular form, and initialize VSL and/or VSR
403* Workspace layout: ("work..." must have at least N words)
404* left_permutation, right_permutation, tau, work...
405*
406 irows = ihi + 1 - ilo
407 icols = n + 1 - ilo
408 itau = iwork
409 iwork = itau + irows
410 CALL sgeqrf( irows, icols, b( ilo, ilo ), ldb, work( itau ),
411 $ work( iwork ), lwork+1-iwork, iinfo )
412 IF( iinfo.GE.0 )
413 $ lwkopt = max( lwkopt, int( work( iwork ) )+iwork-1 )
414 IF( iinfo.NE.0 ) THEN
415 info = n + 2
416 GO TO 10
417 END IF
418*
419 CALL sormqr( 'L', 'T', irows, icols, irows, b( ilo, ilo ), ldb,
420 $ work( itau ), a( ilo, ilo ), lda, work( iwork ),
421 $ lwork+1-iwork, iinfo )
422 IF( iinfo.GE.0 )
423 $ lwkopt = max( lwkopt, int( work( iwork ) )+iwork-1 )
424 IF( iinfo.NE.0 ) THEN
425 info = n + 3
426 GO TO 10
427 END IF
428*
429 IF( ilvsl ) THEN
430 CALL slaset( 'Full', n, n, zero, one, vsl, ldvsl )
431 CALL slacpy( 'L', irows-1, irows-1, b( ilo+1, ilo ), ldb,
432 $ vsl( ilo+1, ilo ), ldvsl )
433 CALL sorgqr( irows, irows, irows, vsl( ilo, ilo ), ldvsl,
434 $ work( itau ), work( iwork ), lwork+1-iwork,
435 $ iinfo )
436 IF( iinfo.GE.0 )
437 $ lwkopt = max( lwkopt, int( work( iwork ) )+iwork-1 )
438 IF( iinfo.NE.0 ) THEN
439 info = n + 4
440 GO TO 10
441 END IF
442 END IF
443*
444 IF( ilvsr )
445 $ CALL slaset( 'Full', n, n, zero, one, vsr, ldvsr )
446*
447* Reduce to generalized Hessenberg form
448*
449 CALL sgghrd( jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb, vsl,
450 $ ldvsl, vsr, ldvsr, iinfo )
451 IF( iinfo.NE.0 ) THEN
452 info = n + 5
453 GO TO 10
454 END IF
455*
456* Perform QZ algorithm, computing Schur vectors if desired
457* Workspace layout: ("work..." must have at least 1 word)
458* left_permutation, right_permutation, work...
459*
460 iwork = itau
461 CALL shgeqz( 'S', jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb,
462 $ alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
463 $ work( iwork ), lwork+1-iwork, iinfo )
464 IF( iinfo.GE.0 )
465 $ lwkopt = max( lwkopt, int( work( iwork ) )+iwork-1 )
466 IF( iinfo.NE.0 ) THEN
467 IF( iinfo.GT.0 .AND. iinfo.LE.n ) THEN
468 info = iinfo
469 ELSE IF( iinfo.GT.n .AND. iinfo.LE.2*n ) THEN
470 info = iinfo - n
471 ELSE
472 info = n + 6
473 END IF
474 GO TO 10
475 END IF
476*
477* Apply permutation to VSL and VSR
478*
479 IF( ilvsl ) THEN
480 CALL sggbak( 'P', 'L', n, ilo, ihi, work( ileft ),
481 $ work( iright ), n, vsl, ldvsl, iinfo )
482 IF( iinfo.NE.0 ) THEN
483 info = n + 7
484 GO TO 10
485 END IF
486 END IF
487 IF( ilvsr ) THEN
488 CALL sggbak( 'P', 'R', n, ilo, ihi, work( ileft ),
489 $ work( iright ), n, vsr, ldvsr, iinfo )
490 IF( iinfo.NE.0 ) THEN
491 info = n + 8
492 GO TO 10
493 END IF
494 END IF
495*
496* Undo scaling
497*
498 IF( ilascl ) THEN
499 CALL slascl( 'H', -1, -1, anrmto, anrm, n, n, a, lda, iinfo )
500 IF( iinfo.NE.0 ) THEN
501 info = n + 9
502 RETURN
503 END IF
504 CALL slascl( 'G', -1, -1, anrmto, anrm, n, 1, alphar, n,
505 $ iinfo )
506 IF( iinfo.NE.0 ) THEN
507 info = n + 9
508 RETURN
509 END IF
510 CALL slascl( 'G', -1, -1, anrmto, anrm, n, 1, alphai, n,
511 $ iinfo )
512 IF( iinfo.NE.0 ) THEN
513 info = n + 9
514 RETURN
515 END IF
516 END IF
517*
518 IF( ilbscl ) THEN
519 CALL slascl( 'U', -1, -1, bnrmto, bnrm, n, n, b, ldb, iinfo )
520 IF( iinfo.NE.0 ) THEN
521 info = n + 9
522 RETURN
523 END IF
524 CALL slascl( 'G', -1, -1, bnrmto, bnrm, n, 1, beta, n, iinfo )
525 IF( iinfo.NE.0 ) THEN
526 info = n + 9
527 RETURN
528 END IF
529 END IF
530*
531 10 CONTINUE
532 work( 1 ) = lwkopt
533*
534 RETURN
535*
536* End of SGEGS
537*
538 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqrf(m, n, a, lda, tau, work, lwork, info)
SGEQRF
Definition sgeqrf.f:146
subroutine sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
SGGBAK
Definition sggbak.f:147
subroutine sggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
SGGBAL
Definition sggbal.f:177
subroutine sgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
SGGHRD
Definition sgghrd.f:207
subroutine shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai, beta, q, ldq, z, ldz, work, lwork, info)
SHGEQZ
Definition shgeqz.f:304
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:143
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
subroutine sorgqr(m, n, k, a, lda, tau, work, lwork, info)
SORGQR
Definition sorgqr.f:128
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:168
subroutine sgegs(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info)
SGEGS computes the eigenvalues, real Schur form, and, optionally, the left and/or right Schur vectors...
Definition sgegs.f:227