![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine sgegs | ( | character | jobvsl, |
character | jobvsr, | ||
integer | n, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real, dimension( * ) | alphar, | ||
real, dimension( * ) | alphai, | ||
real, dimension( * ) | beta, | ||
real, dimension( ldvsl, * ) | vsl, | ||
integer | ldvsl, | ||
real, dimension( ldvsr, * ) | vsr, | ||
integer | ldvsr, | ||
real, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
SGEGS computes the eigenvalues, real Schur form, and, optionally, the left and/or right Schur vectors of a real matrix pair (A,B)
Download SGEGS + dependencies [TGZ] [ZIP] [TXT]
!> !> This routine is deprecated and has been replaced by routine SGGES. !> !> SGEGS computes the eigenvalues, real Schur form, and, optionally, !> left and or/right Schur vectors of a real matrix pair (A,B). !> Given two square matrices A and B, the generalized real Schur !> factorization has the form !> !> A = Q*S*Z**T, B = Q*T*Z**T !> !> where Q and Z are orthogonal matrices, T is upper triangular, and S !> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal !> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs !> of eigenvalues of (A,B). The columns of Q are the left Schur vectors !> and the columns of Z are the right Schur vectors. !> !> If only the eigenvalues of (A,B) are needed, the driver routine !> SGEGV should be used instead. See SGEGV for a description of the !> eigenvalues of the generalized nonsymmetric eigenvalue problem !> (GNEP). !>
[in] | JOBVSL | !> JOBVSL is CHARACTER*1 !> = 'N': do not compute the left Schur vectors; !> = 'V': compute the left Schur vectors (returned in VSL). !> |
[in] | JOBVSR | !> JOBVSR is CHARACTER*1 !> = 'N': do not compute the right Schur vectors; !> = 'V': compute the right Schur vectors (returned in VSR). !> |
[in] | N | !> N is INTEGER !> The order of the matrices A, B, VSL, and VSR. N >= 0. !> |
[in,out] | A | !> A is REAL array, dimension (LDA, N) !> On entry, the matrix A. !> On exit, the upper quasi-triangular matrix S from the !> generalized real Schur factorization. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of A. LDA >= max(1,N). !> |
[in,out] | B | !> B is REAL array, dimension (LDB, N) !> On entry, the matrix B. !> On exit, the upper triangular matrix T from the generalized !> real Schur factorization. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of B. LDB >= max(1,N). !> |
[out] | ALPHAR | !> ALPHAR is REAL array, dimension (N) !> The real parts of each scalar alpha defining an eigenvalue !> of GNEP. !> |
[out] | ALPHAI | !> ALPHAI is REAL array, dimension (N) !> The imaginary parts of each scalar alpha defining an !> eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th !> eigenvalue is real; if positive, then the j-th and (j+1)-st !> eigenvalues are a complex conjugate pair, with !> ALPHAI(j+1) = -ALPHAI(j). !> |
[out] | BETA | !> BETA is REAL array, dimension (N) !> The scalars beta that define the eigenvalues of GNEP. !> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and !> beta = BETA(j) represent the j-th eigenvalue of the matrix !> pair (A,B), in one of the forms lambda = alpha/beta or !> mu = beta/alpha. Since either lambda or mu may overflow, !> they should not, in general, be computed. !> |
[out] | VSL | !> VSL is REAL array, dimension (LDVSL,N) !> If JOBVSL = 'V', the matrix of left Schur vectors Q. !> Not referenced if JOBVSL = 'N'. !> |
[in] | LDVSL | !> LDVSL is INTEGER !> The leading dimension of the matrix VSL. LDVSL >=1, and !> if JOBVSL = 'V', LDVSL >= N. !> |
[out] | VSR | !> VSR is REAL array, dimension (LDVSR,N) !> If JOBVSR = 'V', the matrix of right Schur vectors Z. !> Not referenced if JOBVSR = 'N'. !> |
[in] | LDVSR | !> LDVSR is INTEGER !> The leading dimension of the matrix VSR. LDVSR >= 1, and !> if JOBVSR = 'V', LDVSR >= N. !> |
[out] | WORK | !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,4*N). !> For good performance, LWORK must generally be larger. !> To compute the optimal value of LWORK, call ILAENV to get !> blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: !> NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR !> The optimal LWORK is 2*N + N*(NB+1). !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> = 1,...,N: !> The QZ iteration failed. (A,B) are not in Schur !> form, but ALPHAR(j), ALPHAI(j), and BETA(j) should !> be correct for j=INFO+1,...,N. !> > N: errors that usually indicate LAPACK problems: !> =N+1: error return from SGGBAL !> =N+2: error return from SGEQRF !> =N+3: error return from SORMQR !> =N+4: error return from SORGQR !> =N+5: error return from SGGHRD !> =N+6: error return from SHGEQZ (other than failed !> iteration) !> =N+7: error return from SGGBAK (computing VSL) !> =N+8: error return from SGGBAK (computing VSR) !> =N+9: error return from SLASCL (various places) !> |
Definition at line 222 of file sgegs.f.