LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sptsvx()

subroutine sptsvx ( character fact,
integer n,
integer nrhs,
real, dimension( * ) d,
real, dimension( * ) e,
real, dimension( * ) df,
real, dimension( * ) ef,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real rcond,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) work,
integer info )

SPTSVX computes the solution to system of linear equations A * X = B for PT matrices

Download SPTSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SPTSVX uses the factorization A = L*D*L**T to compute the solution
!> to a real system of linear equations A*X = B, where A is an N-by-N
!> symmetric positive definite tridiagonal matrix and X and B are
!> N-by-NRHS matrices.
!>
!> Error bounds on the solution and a condition estimate are also
!> provided.
!> 
Description:
!>
!> The following steps are performed:
!>
!> 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
!>    is a unit lower bidiagonal matrix and D is diagonal.  The
!>    factorization can also be regarded as having the form
!>    A = U**T*D*U.
!>
!> 2. If the leading principal minor of order i is not positive,
!>    then the routine returns with INFO = i. Otherwise, the factored
!>    form of A is used to estimate the condition number of the matrix
!>    A.  If the reciprocal of the condition number is less than machine
!>    precision, INFO = N+1 is returned as a warning, but the routine
!>    still goes on to solve for X and compute error bounds as
!>    described below.
!>
!> 3. The system of equations is solved for X using the factored form
!>    of A.
!>
!> 4. Iterative refinement is applied to improve the computed solution
!>    matrix and calculate error bounds and backward error estimates
!>    for it.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>          Specifies whether or not the factored form of A has been
!>          supplied on entry.
!>          = 'F':  On entry, DF and EF contain the factored form of A.
!>                  D, E, DF, and EF will not be modified.
!>          = 'N':  The matrix A will be copied to DF and EF and
!>                  factored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in]D
!>          D is REAL array, dimension (N)
!>          The n diagonal elements of the tridiagonal matrix A.
!> 
[in]E
!>          E is REAL array, dimension (N-1)
!>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
!> 
[in,out]DF
!>          DF is REAL array, dimension (N)
!>          If FACT = 'F', then DF is an input argument and on entry
!>          contains the n diagonal elements of the diagonal matrix D
!>          from the L*D*L**T factorization of A.
!>          If FACT = 'N', then DF is an output argument and on exit
!>          contains the n diagonal elements of the diagonal matrix D
!>          from the L*D*L**T factorization of A.
!> 
[in,out]EF
!>          EF is REAL array, dimension (N-1)
!>          If FACT = 'F', then EF is an input argument and on entry
!>          contains the (n-1) subdiagonal elements of the unit
!>          bidiagonal factor L from the L*D*L**T factorization of A.
!>          If FACT = 'N', then EF is an output argument and on exit
!>          contains the (n-1) subdiagonal elements of the unit
!>          bidiagonal factor L from the L*D*L**T factorization of A.
!> 
[in]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          The N-by-NRHS right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>          The reciprocal condition number of the matrix A.  If RCOND
!>          is less than the machine precision (in particular, if
!>          RCOND = 0), the matrix is singular to working precision.
!>          This condition is indicated by a return code of INFO > 0.
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in any
!>          element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is REAL array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is
!>                <= N:  the leading principal minor of order i of A
!>                       is not positive, so the factorization could not
!>                       be completed, and the solution has not been
!>                       computed. RCOND = 0 is returned.
!>                = N+1: U is nonsingular, but RCOND is less than machine
!>                       precision, meaning that the matrix is singular
!>                       to working precision.  Nevertheless, the
!>                       solution and error bounds are computed because
!>                       there are a number of situations where the
!>                       computed solution can be more accurate than the
!>                       value of RCOND would suggest.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 224 of file sptsvx.f.

226*
227* -- LAPACK driver routine --
228* -- LAPACK is a software package provided by Univ. of Tennessee, --
229* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
230*
231* .. Scalar Arguments ..
232 CHARACTER FACT
233 INTEGER INFO, LDB, LDX, N, NRHS
234 REAL RCOND
235* ..
236* .. Array Arguments ..
237 REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
238 $ E( * ), EF( * ), FERR( * ), WORK( * ),
239 $ X( LDX, * )
240* ..
241*
242* =====================================================================
243*
244* .. Parameters ..
245 REAL ZERO
246 parameter( zero = 0.0e+0 )
247* ..
248* .. Local Scalars ..
249 LOGICAL NOFACT
250 REAL ANORM
251* ..
252* .. External Functions ..
253 LOGICAL LSAME
254 REAL SLAMCH, SLANST
255 EXTERNAL lsame, slamch, slanst
256* ..
257* .. External Subroutines ..
258 EXTERNAL scopy, slacpy, sptcon, sptrfs, spttrf,
259 $ spttrs,
260 $ xerbla
261* ..
262* .. Intrinsic Functions ..
263 INTRINSIC max
264* ..
265* .. Executable Statements ..
266*
267* Test the input parameters.
268*
269 info = 0
270 nofact = lsame( fact, 'N' )
271 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
272 info = -1
273 ELSE IF( n.LT.0 ) THEN
274 info = -2
275 ELSE IF( nrhs.LT.0 ) THEN
276 info = -3
277 ELSE IF( ldb.LT.max( 1, n ) ) THEN
278 info = -9
279 ELSE IF( ldx.LT.max( 1, n ) ) THEN
280 info = -11
281 END IF
282 IF( info.NE.0 ) THEN
283 CALL xerbla( 'SPTSVX', -info )
284 RETURN
285 END IF
286*
287 IF( nofact ) THEN
288*
289* Compute the L*D*L**T (or U**T*D*U) factorization of A.
290*
291 CALL scopy( n, d, 1, df, 1 )
292 IF( n.GT.1 )
293 $ CALL scopy( n-1, e, 1, ef, 1 )
294 CALL spttrf( n, df, ef, info )
295*
296* Return if INFO is non-zero.
297*
298 IF( info.GT.0 )THEN
299 rcond = zero
300 RETURN
301 END IF
302 END IF
303*
304* Compute the norm of the matrix A.
305*
306 anorm = slanst( '1', n, d, e )
307*
308* Compute the reciprocal of the condition number of A.
309*
310 CALL sptcon( n, df, ef, anorm, rcond, work, info )
311*
312* Compute the solution vectors X.
313*
314 CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
315 CALL spttrs( n, nrhs, df, ef, x, ldx, info )
316*
317* Use iterative refinement to improve the computed solutions and
318* compute error bounds and backward error estimates for them.
319*
320 CALL sptrfs( n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr,
321 $ work, info )
322*
323* Set INFO = N+1 if the matrix is singular to working precision.
324*
325 IF( rcond.LT.slamch( 'Epsilon' ) )
326 $ info = n + 1
327*
328 RETURN
329*
330* End of SPTSVX
331*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slanst(norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slanst.f:98
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine sptcon(n, d, e, anorm, rcond, work, info)
SPTCON
Definition sptcon.f:116
subroutine sptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
SPTRFS
Definition sptrfs.f:161
subroutine spttrf(n, d, e, info)
SPTTRF
Definition spttrf.f:89
subroutine spttrs(n, nrhs, d, e, b, ldb, info)
SPTTRS
Definition spttrs.f:107
Here is the call graph for this function:
Here is the caller graph for this function: