LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
real function slanst | ( | character | norm, |
integer | n, | ||
real, dimension( * ) | d, | ||
real, dimension( * ) | e ) |
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Download SLANST + dependencies [TGZ] [ZIP] [TXT]
!> !> SLANST returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real symmetric tridiagonal matrix A. !>
!> !> SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
[in] | NORM | !> NORM is CHARACTER*1 !> Specifies the value to be returned in SLANST as described !> above. !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, SLANST is !> set to zero. !> |
[in] | D | !> D is REAL array, dimension (N) !> The diagonal elements of A. !> |
[in] | E | !> E is REAL array, dimension (N-1) !> The (n-1) sub-diagonal or super-diagonal elements of A. !> |
Definition at line 97 of file slanst.f.