LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zpstf2()

subroutine zpstf2 ( character uplo,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
integer, dimension( n ) piv,
integer rank,
double precision tol,
double precision, dimension( 2*n ) work,
integer info )

ZPSTF2 computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.

Download ZPSTF2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZPSTF2 computes the Cholesky factorization with complete
!> pivoting of a complex Hermitian positive semidefinite matrix A.
!>
!> The factorization has the form
!>    P**T * A * P = U**H * U ,  if UPLO = 'U',
!>    P**T * A * P = L  * L**H,  if UPLO = 'L',
!> where U is an upper triangular matrix and L is lower triangular, and
!> P is stored as vector PIV.
!>
!> This algorithm does not attempt to check that A is positive
!> semidefinite. This version of the algorithm calls level 2 BLAS.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrix A is stored.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!>          n by n upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading n by n lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the factor U or L from the Cholesky
!>          factorization as above.
!> 
[out]PIV
!>          PIV is INTEGER array, dimension (N)
!>          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
!> 
[out]RANK
!>          RANK is INTEGER
!>          The rank of A given by the number of steps the algorithm
!>          completed.
!> 
[in]TOL
!>          TOL is DOUBLE PRECISION
!>          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
!>          will be used. The algorithm terminates at the (K-1)st step
!>          if the pivot <= TOL.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (2*N)
!>          Work space.
!> 
[out]INFO
!>          INFO is INTEGER
!>          < 0: If INFO = -K, the K-th argument had an illegal value,
!>          = 0: algorithm completed successfully, and
!>          > 0: the matrix A is either rank deficient with computed rank
!>               as returned in RANK, or is not positive semidefinite. See
!>               Section 7 of LAPACK Working Note #161 for further
!>               information.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 139 of file zpstf2.f.

141*
142* -- LAPACK computational routine --
143* -- LAPACK is a software package provided by Univ. of Tennessee, --
144* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
145*
146* .. Scalar Arguments ..
147 DOUBLE PRECISION TOL
148 INTEGER INFO, LDA, N, RANK
149 CHARACTER UPLO
150* ..
151* .. Array Arguments ..
152 COMPLEX*16 A( LDA, * )
153 DOUBLE PRECISION WORK( 2*N )
154 INTEGER PIV( N )
155* ..
156*
157* =====================================================================
158*
159* .. Parameters ..
160 DOUBLE PRECISION ONE, ZERO
161 parameter( one = 1.0d+0, zero = 0.0d+0 )
162 COMPLEX*16 CONE
163 parameter( cone = ( 1.0d+0, 0.0d+0 ) )
164* ..
165* .. Local Scalars ..
166 COMPLEX*16 ZTEMP
167 DOUBLE PRECISION AJJ, DSTOP, DTEMP
168 INTEGER I, ITEMP, J, PVT
169 LOGICAL UPPER
170* ..
171* .. External Functions ..
172 DOUBLE PRECISION DLAMCH
173 LOGICAL LSAME, DISNAN
174 EXTERNAL dlamch, lsame, disnan
175* ..
176* .. External Subroutines ..
177 EXTERNAL zdscal, zgemv, zlacgv, zswap,
178 $ xerbla
179* ..
180* .. Intrinsic Functions ..
181 INTRINSIC dble, dconjg, max, sqrt
182* ..
183* .. Executable Statements ..
184*
185* Test the input parameters
186*
187 info = 0
188 upper = lsame( uplo, 'U' )
189 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
190 info = -1
191 ELSE IF( n.LT.0 ) THEN
192 info = -2
193 ELSE IF( lda.LT.max( 1, n ) ) THEN
194 info = -4
195 END IF
196 IF( info.NE.0 ) THEN
197 CALL xerbla( 'ZPSTF2', -info )
198 RETURN
199 END IF
200*
201* Quick return if possible
202*
203 IF( n.EQ.0 )
204 $ RETURN
205*
206* Initialize PIV
207*
208 DO 100 i = 1, n
209 piv( i ) = i
210 100 CONTINUE
211*
212* Compute stopping value
213*
214 DO 110 i = 1, n
215 work( i ) = dble( a( i, i ) )
216 110 CONTINUE
217 pvt = maxloc( work( 1:n ), 1 )
218 ajj = dble( a( pvt, pvt ) )
219 IF( ajj.LE.zero.OR.disnan( ajj ) ) THEN
220 rank = 0
221 info = 1
222 GO TO 200
223 END IF
224*
225* Compute stopping value if not supplied
226*
227 IF( tol.LT.zero ) THEN
228 dstop = n * dlamch( 'Epsilon' ) * ajj
229 ELSE
230 dstop = tol
231 END IF
232*
233* Set first half of WORK to zero, holds dot products
234*
235 DO 120 i = 1, n
236 work( i ) = 0
237 120 CONTINUE
238*
239 IF( upper ) THEN
240*
241* Compute the Cholesky factorization P**T * A * P = U**H* U
242*
243 DO 150 j = 1, n
244*
245* Find pivot, test for exit, else swap rows and columns
246* Update dot products, compute possible pivots which are
247* stored in the second half of WORK
248*
249 DO 130 i = j, n
250*
251 IF( j.GT.1 ) THEN
252 work( i ) = work( i ) +
253 $ dble( dconjg( a( j-1, i ) )*
254 $ a( j-1, i ) )
255 END IF
256 work( n+i ) = dble( a( i, i ) ) - work( i )
257*
258 130 CONTINUE
259*
260 IF( j.GT.1 ) THEN
261 itemp = maxloc( work( (n+j):(2*n) ), 1 )
262 pvt = itemp + j - 1
263 ajj = work( n+pvt )
264 IF( ajj.LE.dstop.OR.disnan( ajj ) ) THEN
265 a( j, j ) = ajj
266 GO TO 190
267 END IF
268 END IF
269*
270 IF( j.NE.pvt ) THEN
271*
272* Pivot OK, so can now swap pivot rows and columns
273*
274 a( pvt, pvt ) = a( j, j )
275 CALL zswap( j-1, a( 1, j ), 1, a( 1, pvt ), 1 )
276 IF( pvt.LT.n )
277 $ CALL zswap( n-pvt, a( j, pvt+1 ), lda,
278 $ a( pvt, pvt+1 ), lda )
279 DO 140 i = j + 1, pvt - 1
280 ztemp = dconjg( a( j, i ) )
281 a( j, i ) = dconjg( a( i, pvt ) )
282 a( i, pvt ) = ztemp
283 140 CONTINUE
284 a( j, pvt ) = dconjg( a( j, pvt ) )
285*
286* Swap dot products and PIV
287*
288 dtemp = work( j )
289 work( j ) = work( pvt )
290 work( pvt ) = dtemp
291 itemp = piv( pvt )
292 piv( pvt ) = piv( j )
293 piv( j ) = itemp
294 END IF
295*
296 ajj = sqrt( ajj )
297 a( j, j ) = ajj
298*
299* Compute elements J+1:N of row J
300*
301 IF( j.LT.n ) THEN
302 CALL zlacgv( j-1, a( 1, j ), 1 )
303 CALL zgemv( 'Trans', j-1, n-j, -cone, a( 1, j+1 ),
304 $ lda,
305 $ a( 1, j ), 1, cone, a( j, j+1 ), lda )
306 CALL zlacgv( j-1, a( 1, j ), 1 )
307 CALL zdscal( n-j, one / ajj, a( j, j+1 ), lda )
308 END IF
309*
310 150 CONTINUE
311*
312 ELSE
313*
314* Compute the Cholesky factorization P**T * A * P = L * L**H
315*
316 DO 180 j = 1, n
317*
318* Find pivot, test for exit, else swap rows and columns
319* Update dot products, compute possible pivots which are
320* stored in the second half of WORK
321*
322 DO 160 i = j, n
323*
324 IF( j.GT.1 ) THEN
325 work( i ) = work( i ) +
326 $ dble( dconjg( a( i, j-1 ) )*
327 $ a( i, j-1 ) )
328 END IF
329 work( n+i ) = dble( a( i, i ) ) - work( i )
330*
331 160 CONTINUE
332*
333 IF( j.GT.1 ) THEN
334 itemp = maxloc( work( (n+j):(2*n) ), 1 )
335 pvt = itemp + j - 1
336 ajj = work( n+pvt )
337 IF( ajj.LE.dstop.OR.disnan( ajj ) ) THEN
338 a( j, j ) = ajj
339 GO TO 190
340 END IF
341 END IF
342*
343 IF( j.NE.pvt ) THEN
344*
345* Pivot OK, so can now swap pivot rows and columns
346*
347 a( pvt, pvt ) = a( j, j )
348 CALL zswap( j-1, a( j, 1 ), lda, a( pvt, 1 ), lda )
349 IF( pvt.LT.n )
350 $ CALL zswap( n-pvt, a( pvt+1, j ), 1, a( pvt+1,
351 $ pvt ),
352 $ 1 )
353 DO 170 i = j + 1, pvt - 1
354 ztemp = dconjg( a( i, j ) )
355 a( i, j ) = dconjg( a( pvt, i ) )
356 a( pvt, i ) = ztemp
357 170 CONTINUE
358 a( pvt, j ) = dconjg( a( pvt, j ) )
359*
360* Swap dot products and PIV
361*
362 dtemp = work( j )
363 work( j ) = work( pvt )
364 work( pvt ) = dtemp
365 itemp = piv( pvt )
366 piv( pvt ) = piv( j )
367 piv( j ) = itemp
368 END IF
369*
370 ajj = sqrt( ajj )
371 a( j, j ) = ajj
372*
373* Compute elements J+1:N of column J
374*
375 IF( j.LT.n ) THEN
376 CALL zlacgv( j-1, a( j, 1 ), lda )
377 CALL zgemv( 'No Trans', n-j, j-1, -cone, a( j+1, 1 ),
378 $ lda, a( j, 1 ), lda, cone, a( j+1, j ), 1 )
379 CALL zlacgv( j-1, a( j, 1 ), lda )
380 CALL zdscal( n-j, one / ajj, a( j+1, j ), 1 )
381 END IF
382*
383 180 CONTINUE
384*
385 END IF
386*
387* Ran to completion, A has full rank
388*
389 rank = n
390*
391 GO TO 200
392 190 CONTINUE
393*
394* Rank is number of steps completed. Set INFO = 1 to signal
395* that the factorization cannot be used to solve a system.
396*
397 rank = j - 1
398 info = 1
399*
400 200 CONTINUE
401 RETURN
402*
403* End of ZPSTF2
404*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
Definition zgemv.f:160
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
subroutine zswap(n, zx, incx, zy, incy)
ZSWAP
Definition zswap.f:81
Here is the call graph for this function:
Here is the caller graph for this function: