LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgemlq()

subroutine sgemlq ( character side,
character trans,
integer m,
integer n,
integer k,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) t,
integer tsize,
real, dimension( ldc, * ) c,
integer ldc,
real, dimension( * ) work,
integer lwork,
integer info )

SGEMLQ

Purpose:
!>
!>     SGEMLQ overwrites the general real M-by-N matrix C with
!>
!>                    SIDE = 'L'     SIDE = 'R'
!>    TRANS = 'N':      Q * C          C * Q
!>    TRANS = 'T':      Q**T * C       C * Q**T
!>    where Q is a real orthogonal matrix defined as the product
!>    of blocked elementary reflectors computed by short wide LQ
!>    factorization (SGELQ)
!>
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >=0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> 
[in]A
!>          A is REAL array, dimension
!>                               (LDA,M) if SIDE = 'L',
!>                               (LDA,N) if SIDE = 'R'
!>          Part of the data structure to represent Q as returned by SGELQ.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,K).
!> 
[in]T
!>          T is REAL array, dimension (MAX(5,TSIZE)).
!>          Part of the data structure to represent Q as returned by SGELQ.
!> 
[in]TSIZE
!>          TSIZE is INTEGER
!>          The dimension of the array T. TSIZE >= 5.
!> 
[in,out]C
!>          C is REAL array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= 1.
!>          If LWORK = -1, then a workspace query is assumed. The routine
!>          only calculates the size of the WORK array, returns this
!>          value as WORK(1), and no error message related to WORK
!>          is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
!>
!> These details are particular for this LAPACK implementation. Users should not
!> take them for granted. These details may change in the future, and are not likely
!> true for another LAPACK implementation. These details are relevant if one wants
!> to try to understand the code. They are not part of the interface.
!>
!> In this version,
!>
!>          T(2): row block size (MB)
!>          T(3): column block size (NB)
!>          T(6:TSIZE): data structure needed for Q, computed by
!>                           SLASWLQ or SGELQT
!>
!>  Depending on the matrix dimensions M and N, and row and column
!>  block sizes MB and NB returned by ILAENV, SGELQ will use either
!>  SLASWLQ (if the matrix is wide-and-short) or SGELQT to compute
!>  the LQ factorization.
!>  This version of SGEMLQ will use either SLAMSWLQ or SGEMLQT to
!>  multiply matrix Q by another matrix.
!>  Further Details in SLAMSWLQ or SGEMLQT.
!> 

Definition at line 171 of file sgemlq.f.

173*
174* -- LAPACK computational routine --
175* -- LAPACK is a software package provided by Univ. of Tennessee, --
176* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177*
178* .. Scalar Arguments ..
179 CHARACTER SIDE, TRANS
180 INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
181* ..
182* .. Array Arguments ..
183 REAL A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
184* ..
185*
186* =====================================================================
187*
188* ..
189* .. Local Scalars ..
190 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
191 INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN
192* ..
193* .. External Functions ..
194 LOGICAL LSAME
195 EXTERNAL lsame
196* ..
197* .. External Functions ..
198 REAL SROUNDUP_LWORK
199 EXTERNAL sroundup_lwork
200* ..
201* .. External Subroutines ..
202 EXTERNAL slamswlq, sgemlqt, xerbla
203* ..
204* .. Intrinsic Functions ..
205 INTRINSIC int, max, min, mod
206* ..
207* .. Executable Statements ..
208*
209* Test the input arguments
210*
211 lquery = ( lwork.EQ.-1 )
212 notran = lsame( trans, 'N' )
213 tran = lsame( trans, 'T' )
214 left = lsame( side, 'L' )
215 right = lsame( side, 'R' )
216*
217 mb = int( t( 2 ) )
218 nb = int( t( 3 ) )
219 IF( left ) THEN
220 lw = n * mb
221 mn = m
222 ELSE
223 lw = m * mb
224 mn = n
225 END IF
226*
227 minmnk = min( m, n, k )
228 IF( minmnk.EQ.0 ) THEN
229 lwmin = 1
230 ELSE
231 lwmin = max( 1, lw )
232 END IF
233*
234 IF( ( nb.GT.k ) .AND. ( mn.GT.k ) ) THEN
235 IF( mod( mn - k, nb - k ) .EQ. 0 ) THEN
236 nblcks = ( mn - k ) / ( nb - k )
237 ELSE
238 nblcks = ( mn - k ) / ( nb - k ) + 1
239 END IF
240 ELSE
241 nblcks = 1
242 END IF
243*
244 info = 0
245 IF( .NOT.left .AND. .NOT.right ) THEN
246 info = -1
247 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
248 info = -2
249 ELSE IF( m.LT.0 ) THEN
250 info = -3
251 ELSE IF( n.LT.0 ) THEN
252 info = -4
253 ELSE IF( k.LT.0 .OR. k.GT.mn ) THEN
254 info = -5
255 ELSE IF( lda.LT.max( 1, k ) ) THEN
256 info = -7
257 ELSE IF( tsize.LT.5 ) THEN
258 info = -9
259 ELSE IF( ldc.LT.max( 1, m ) ) THEN
260 info = -11
261 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
262 info = -13
263 END IF
264*
265 IF( info.EQ.0 ) THEN
266 work( 1 ) = sroundup_lwork( lwmin )
267 END IF
268*
269 IF( info.NE.0 ) THEN
270 CALL xerbla( 'SGEMLQ', -info )
271 RETURN
272 ELSE IF( lquery ) THEN
273 RETURN
274 END IF
275*
276* Quick return if possible
277*
278 IF( minmnk.EQ.0 ) THEN
279 RETURN
280 END IF
281*
282 IF( ( left .AND. m.LE.k ) .OR. ( right .AND. n.LE.k )
283 $ .OR. ( nb.LE.k ) .OR. ( nb.GE.max( m, n, k ) ) ) THEN
284 CALL sgemlqt( side, trans, m, n, k, mb, a, lda,
285 $ t( 6 ), mb, c, ldc, work, info )
286 ELSE
287 CALL slamswlq( side, trans, m, n, k, mb, nb, a, lda, t( 6 ),
288 $ mb, c, ldc, work, lwork, info )
289 END IF
290*
291 work( 1 ) = sroundup_lwork( lwmin )
292*
293 RETURN
294*
295* End of SGEMLQ
296*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgemlqt(side, trans, m, n, k, mb, v, ldv, t, ldt, c, ldc, work, info)
SGEMLQT
Definition sgemlqt.f:153
subroutine slamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
SLAMSWLQ
Definition slamswlq.f:200
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: