222
223
224
225
226
227
228 CHARACTER HOWMNY, SIDE
229 INTEGER INFO, LDT, LDVL, LDVR, M, MM, N
230
231
232 LOGICAL SELECT( * )
233 REAL T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
234 $ WORK( * )
235
236
237
238
239
240 REAL ZERO, ONE
241 parameter( zero = 0.0e+0, one = 1.0e+0 )
242
243
244 LOGICAL ALLV, BOTHV, LEFTV, OVER, PAIR, RIGHTV, SOMEV
245 INTEGER I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI, N2
246 REAL BETA, BIGNUM, EMAX, OVFL, REC, REMAX, SCALE,
247 $ SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, WI, WR,
248 $ XNORM
249
250
251 LOGICAL LSAME
252 INTEGER ISAMAX
253 REAL SDOT, SLAMCH
255
256
258
259
260 INTRINSIC abs, max, sqrt
261
262
263 REAL X( 2, 2 )
264
265
266
267
268
269 bothv =
lsame( side,
'B' )
270 rightv =
lsame( side,
'R' ) .OR. bothv
271 leftv =
lsame( side,
'L' ) .OR. bothv
272
273 allv =
lsame( howmny,
'A' )
274 over =
lsame( howmny,
'B' )
275 somev =
lsame( howmny,
'S' )
276
277 info = 0
278 IF( .NOT.rightv .AND. .NOT.leftv ) THEN
279 info = -1
280 ELSE IF( .NOT.allv .AND. .NOT.over .AND. .NOT.somev ) THEN
281 info = -2
282 ELSE IF( n.LT.0 ) THEN
283 info = -4
284 ELSE IF( ldt.LT.max( 1, n ) ) THEN
285 info = -6
286 ELSE IF( ldvl.LT.1 .OR. ( leftv .AND. ldvl.LT.n ) ) THEN
287 info = -8
288 ELSE IF( ldvr.LT.1 .OR. ( rightv .AND. ldvr.LT.n ) ) THEN
289 info = -10
290 ELSE
291
292
293
294
295
296 IF( somev ) THEN
297 m = 0
298 pair = .false.
299 DO 10 j = 1, n
300 IF( pair ) THEN
301 pair = .false.
302 SELECT( j ) = .false.
303 ELSE
304 IF( j.LT.n ) THEN
305 IF( t( j+1, j ).EQ.zero ) THEN
306 IF( SELECT( j ) )
307 $ m = m + 1
308 ELSE
309 pair = .true.
310 IF( SELECT( j ) .OR. SELECT( j+1 ) ) THEN
311 SELECT( j ) = .true.
312 m = m + 2
313 END IF
314 END IF
315 ELSE
316 IF( SELECT( n ) )
317 $ m = m + 1
318 END IF
319 END IF
320 10 CONTINUE
321 ELSE
322 m = n
323 END IF
324
325 IF( mm.LT.m ) THEN
326 info = -11
327 END IF
328 END IF
329 IF( info.NE.0 ) THEN
330 CALL xerbla(
'STREVC', -info )
331 RETURN
332 END IF
333
334
335
336 IF( n.EQ.0 )
337 $ RETURN
338
339
340
341 unfl =
slamch(
'Safe minimum' )
342 ovfl = one / unfl
343 ulp =
slamch(
'Precision' )
344 smlnum = unfl*( n / ulp )
345 bignum = ( one-ulp ) / smlnum
346
347
348
349
350 work( 1 ) = zero
351 DO 30 j = 2, n
352 work( j ) = zero
353 DO 20 i = 1, j - 1
354 work( j ) = work( j ) + abs( t( i, j ) )
355 20 CONTINUE
356 30 CONTINUE
357
358
359
360
361
362
363 n2 = 2*n
364
365 IF( rightv ) THEN
366
367
368
369 ip = 0
370 is = m
371 DO 140 ki = n, 1, -1
372
373 IF( ip.EQ.1 )
374 $ GO TO 130
375 IF( ki.EQ.1 )
376 $ GO TO 40
377 IF( t( ki, ki-1 ).EQ.zero )
378 $ GO TO 40
379 ip = -1
380
381 40 CONTINUE
382 IF( somev ) THEN
383 IF( ip.EQ.0 ) THEN
384 IF( .NOT.SELECT( ki ) )
385 $ GO TO 130
386 ELSE
387 IF( .NOT.SELECT( ki-1 ) )
388 $ GO TO 130
389 END IF
390 END IF
391
392
393
394 wr = t( ki, ki )
395 wi = zero
396 IF( ip.NE.0 )
397 $ wi = sqrt( abs( t( ki, ki-1 ) ) )*
398 $ sqrt( abs( t( ki-1, ki ) ) )
399 smin = max( ulp*( abs( wr )+abs( wi ) ), smlnum )
400
401 IF( ip.EQ.0 ) THEN
402
403
404
405 work( ki+n ) = one
406
407
408
409 DO 50 k = 1, ki - 1
410 work( k+n ) = -t( k, ki )
411 50 CONTINUE
412
413
414
415
416 jnxt = ki - 1
417 DO 60 j = ki - 1, 1, -1
418 IF( j.GT.jnxt )
419 $ GO TO 60
420 j1 = j
421 j2 = j
422 jnxt = j - 1
423 IF( j.GT.1 ) THEN
424 IF( t( j, j-1 ).NE.zero ) THEN
425 j1 = j - 1
426 jnxt = j - 2
427 END IF
428 END IF
429
430 IF( j1.EQ.j2 ) THEN
431
432
433
434 CALL slaln2( .false., 1, 1, smin, one, t( j, j ),
435 $ ldt, one, one, work( j+n ), n, wr,
436 $ zero, x, 2, scale, xnorm, ierr )
437
438
439
440
441 IF( xnorm.GT.one ) THEN
442 IF( work( j ).GT.bignum / xnorm ) THEN
443 x( 1, 1 ) = x( 1, 1 ) / xnorm
444 scale = scale / xnorm
445 END IF
446 END IF
447
448
449
450 IF( scale.NE.one )
451 $
CALL sscal( ki, scale, work( 1+n ), 1 )
452 work( j+n ) = x( 1, 1 )
453
454
455
456 CALL saxpy( j-1, -x( 1, 1 ), t( 1, j ), 1,
457 $ work( 1+n ), 1 )
458
459 ELSE
460
461
462
463 CALL slaln2( .false., 2, 1, smin, one,
464 $ t( j-1, j-1 ), ldt, one, one,
465 $ work( j-1+n ), n, wr, zero, x, 2,
466 $ scale, xnorm, ierr )
467
468
469
470
471 IF( xnorm.GT.one ) THEN
472 beta = max( work( j-1 ), work( j ) )
473 IF( beta.GT.bignum / xnorm ) THEN
474 x( 1, 1 ) = x( 1, 1 ) / xnorm
475 x( 2, 1 ) = x( 2, 1 ) / xnorm
476 scale = scale / xnorm
477 END IF
478 END IF
479
480
481
482 IF( scale.NE.one )
483 $
CALL sscal( ki, scale, work( 1+n ), 1 )
484 work( j-1+n ) = x( 1, 1 )
485 work( j+n ) = x( 2, 1 )
486
487
488
489 CALL saxpy( j-2, -x( 1, 1 ), t( 1, j-1 ), 1,
490 $ work( 1+n ), 1 )
491 CALL saxpy( j-2, -x( 2, 1 ), t( 1, j ), 1,
492 $ work( 1+n ), 1 )
493 END IF
494 60 CONTINUE
495
496
497
498 IF( .NOT.over ) THEN
499 CALL scopy( ki, work( 1+n ), 1, vr( 1, is ), 1 )
500
501 ii =
isamax( ki, vr( 1, is ), 1 )
502 remax = one / abs( vr( ii, is ) )
503 CALL sscal( ki, remax, vr( 1, is ), 1 )
504
505 DO 70 k = ki + 1, n
506 vr( k, is ) = zero
507 70 CONTINUE
508 ELSE
509 IF( ki.GT.1 )
510 $
CALL sgemv(
'N', n, ki-1, one, vr, ldvr,
511 $ work( 1+n ), 1, work( ki+n ),
512 $ vr( 1, ki ), 1 )
513
514 ii =
isamax( n, vr( 1, ki ), 1 )
515 remax = one / abs( vr( ii, ki ) )
516 CALL sscal( n, remax, vr( 1, ki ), 1 )
517 END IF
518
519 ELSE
520
521
522
523
524
525
526
527 IF( abs( t( ki-1, ki ) ).GE.abs( t( ki, ki-1 ) ) ) THEN
528 work( ki-1+n ) = one
529 work( ki+n2 ) = wi / t( ki-1, ki )
530 ELSE
531 work( ki-1+n ) = -wi / t( ki, ki-1 )
532 work( ki+n2 ) = one
533 END IF
534 work( ki+n ) = zero
535 work( ki-1+n2 ) = zero
536
537
538
539 DO 80 k = 1, ki - 2
540 work( k+n ) = -work( ki-1+n )*t( k, ki-1 )
541 work( k+n2 ) = -work( ki+n2 )*t( k, ki )
542 80 CONTINUE
543
544
545
546
547 jnxt = ki - 2
548 DO 90 j = ki - 2, 1, -1
549 IF( j.GT.jnxt )
550 $ GO TO 90
551 j1 = j
552 j2 = j
553 jnxt = j - 1
554 IF( j.GT.1 ) THEN
555 IF( t( j, j-1 ).NE.zero ) THEN
556 j1 = j - 1
557 jnxt = j - 2
558 END IF
559 END IF
560
561 IF( j1.EQ.j2 ) THEN
562
563
564
565 CALL slaln2( .false., 1, 2, smin, one, t( j, j ),
566 $ ldt, one, one, work( j+n ), n, wr, wi,
567 $ x, 2, scale, xnorm, ierr )
568
569
570
571
572 IF( xnorm.GT.one ) THEN
573 IF( work( j ).GT.bignum / xnorm ) THEN
574 x( 1, 1 ) = x( 1, 1 ) / xnorm
575 x( 1, 2 ) = x( 1, 2 ) / xnorm
576 scale = scale / xnorm
577 END IF
578 END IF
579
580
581
582 IF( scale.NE.one ) THEN
583 CALL sscal( ki, scale, work( 1+n ), 1 )
584 CALL sscal( ki, scale, work( 1+n2 ), 1 )
585 END IF
586 work( j+n ) = x( 1, 1 )
587 work( j+n2 ) = x( 1, 2 )
588
589
590
591 CALL saxpy( j-1, -x( 1, 1 ), t( 1, j ), 1,
592 $ work( 1+n ), 1 )
593 CALL saxpy( j-1, -x( 1, 2 ), t( 1, j ), 1,
594 $ work( 1+n2 ), 1 )
595
596 ELSE
597
598
599
600 CALL slaln2( .false., 2, 2, smin, one,
601 $ t( j-1, j-1 ), ldt, one, one,
602 $ work( j-1+n ), n, wr, wi, x, 2, scale,
603 $ xnorm, ierr )
604
605
606
607
608 IF( xnorm.GT.one ) THEN
609 beta = max( work( j-1 ), work( j ) )
610 IF( beta.GT.bignum / xnorm ) THEN
611 rec = one / xnorm
612 x( 1, 1 ) = x( 1, 1 )*rec
613 x( 1, 2 ) = x( 1, 2 )*rec
614 x( 2, 1 ) = x( 2, 1 )*rec
615 x( 2, 2 ) = x( 2, 2 )*rec
616 scale = scale*rec
617 END IF
618 END IF
619
620
621
622 IF( scale.NE.one ) THEN
623 CALL sscal( ki, scale, work( 1+n ), 1 )
624 CALL sscal( ki, scale, work( 1+n2 ), 1 )
625 END IF
626 work( j-1+n ) = x( 1, 1 )
627 work( j+n ) = x( 2, 1 )
628 work( j-1+n2 ) = x( 1, 2 )
629 work( j+n2 ) = x( 2, 2 )
630
631
632
633 CALL saxpy( j-2, -x( 1, 1 ), t( 1, j-1 ), 1,
634 $ work( 1+n ), 1 )
635 CALL saxpy( j-2, -x( 2, 1 ), t( 1, j ), 1,
636 $ work( 1+n ), 1 )
637 CALL saxpy( j-2, -x( 1, 2 ), t( 1, j-1 ), 1,
638 $ work( 1+n2 ), 1 )
639 CALL saxpy( j-2, -x( 2, 2 ), t( 1, j ), 1,
640 $ work( 1+n2 ), 1 )
641 END IF
642 90 CONTINUE
643
644
645
646 IF( .NOT.over ) THEN
647 CALL scopy( ki, work( 1+n ), 1, vr( 1, is-1 ), 1 )
648 CALL scopy( ki, work( 1+n2 ), 1, vr( 1, is ), 1 )
649
650 emax = zero
651 DO 100 k = 1, ki
652 emax = max( emax, abs( vr( k, is-1 ) )+
653 $ abs( vr( k, is ) ) )
654 100 CONTINUE
655
656 remax = one / emax
657 CALL sscal( ki, remax, vr( 1, is-1 ), 1 )
658 CALL sscal( ki, remax, vr( 1, is ), 1 )
659
660 DO 110 k = ki + 1, n
661 vr( k, is-1 ) = zero
662 vr( k, is ) = zero
663 110 CONTINUE
664
665 ELSE
666
667 IF( ki.GT.2 ) THEN
668 CALL sgemv(
'N', n, ki-2, one, vr, ldvr,
669 $ work( 1+n ), 1, work( ki-1+n ),
670 $ vr( 1, ki-1 ), 1 )
671 CALL sgemv(
'N', n, ki-2, one, vr, ldvr,
672 $ work( 1+n2 ), 1, work( ki+n2 ),
673 $ vr( 1, ki ), 1 )
674 ELSE
675 CALL sscal( n, work( ki-1+n ), vr( 1, ki-1 ), 1 )
676 CALL sscal( n, work( ki+n2 ), vr( 1, ki ), 1 )
677 END IF
678
679 emax = zero
680 DO 120 k = 1, n
681 emax = max( emax, abs( vr( k, ki-1 ) )+
682 $ abs( vr( k, ki ) ) )
683 120 CONTINUE
684 remax = one / emax
685 CALL sscal( n, remax, vr( 1, ki-1 ), 1 )
686 CALL sscal( n, remax, vr( 1, ki ), 1 )
687 END IF
688 END IF
689
690 is = is - 1
691 IF( ip.NE.0 )
692 $ is = is - 1
693 130 CONTINUE
694 IF( ip.EQ.1 )
695 $ ip = 0
696 IF( ip.EQ.-1 )
697 $ ip = 1
698 140 CONTINUE
699 END IF
700
701 IF( leftv ) THEN
702
703
704
705 ip = 0
706 is = 1
707 DO 260 ki = 1, n
708
709 IF( ip.EQ.-1 )
710 $ GO TO 250
711 IF( ki.EQ.n )
712 $ GO TO 150
713 IF( t( ki+1, ki ).EQ.zero )
714 $ GO TO 150
715 ip = 1
716
717 150 CONTINUE
718 IF( somev ) THEN
719 IF( .NOT.SELECT( ki ) )
720 $ GO TO 250
721 END IF
722
723
724
725 wr = t( ki, ki )
726 wi = zero
727 IF( ip.NE.0 )
728 $ wi = sqrt( abs( t( ki, ki+1 ) ) )*
729 $ sqrt( abs( t( ki+1, ki ) ) )
730 smin = max( ulp*( abs( wr )+abs( wi ) ), smlnum )
731
732 IF( ip.EQ.0 ) THEN
733
734
735
736 work( ki+n ) = one
737
738
739
740 DO 160 k = ki + 1, n
741 work( k+n ) = -t( ki, k )
742 160 CONTINUE
743
744
745
746
747 vmax = one
748 vcrit = bignum
749
750 jnxt = ki + 1
751 DO 170 j = ki + 1, n
752 IF( j.LT.jnxt )
753 $ GO TO 170
754 j1 = j
755 j2 = j
756 jnxt = j + 1
757 IF( j.LT.n ) THEN
758 IF( t( j+1, j ).NE.zero ) THEN
759 j2 = j + 1
760 jnxt = j + 2
761 END IF
762 END IF
763
764 IF( j1.EQ.j2 ) THEN
765
766
767
768
769
770
771 IF( work( j ).GT.vcrit ) THEN
772 rec = one / vmax
773 CALL sscal( n-ki+1, rec, work( ki+n ), 1 )
774 vmax = one
775 vcrit = bignum
776 END IF
777
778 work( j+n ) = work( j+n ) -
779 $
sdot( j-ki-1, t( ki+1, j ), 1,
780 $ work( ki+1+n ), 1 )
781
782
783
784 CALL slaln2( .false., 1, 1, smin, one, t( j, j ),
785 $ ldt, one, one, work( j+n ), n, wr,
786 $ zero, x, 2, scale, xnorm, ierr )
787
788
789
790 IF( scale.NE.one )
791 $
CALL sscal( n-ki+1, scale, work( ki+n ), 1 )
792 work( j+n ) = x( 1, 1 )
793 vmax = max( abs( work( j+n ) ), vmax )
794 vcrit = bignum / vmax
795
796 ELSE
797
798
799
800
801
802
803 beta = max( work( j ), work( j+1 ) )
804 IF( beta.GT.vcrit ) THEN
805 rec = one / vmax
806 CALL sscal( n-ki+1, rec, work( ki+n ), 1 )
807 vmax = one
808 vcrit = bignum
809 END IF
810
811 work( j+n ) = work( j+n ) -
812 $
sdot( j-ki-1, t( ki+1, j ), 1,
813 $ work( ki+1+n ), 1 )
814
815 work( j+1+n ) = work( j+1+n ) -
816 $
sdot( j-ki-1, t( ki+1, j+1 ), 1,
817 $ work( ki+1+n ), 1 )
818
819
820
821
822
823 CALL slaln2( .true., 2, 1, smin, one, t( j, j ),
824 $ ldt, one, one, work( j+n ), n, wr,
825 $ zero, x, 2, scale, xnorm, ierr )
826
827
828
829 IF( scale.NE.one )
830 $
CALL sscal( n-ki+1, scale, work( ki+n ), 1 )
831 work( j+n ) = x( 1, 1 )
832 work( j+1+n ) = x( 2, 1 )
833
834 vmax = max( abs( work( j+n ) ),
835 $ abs( work( j+1+n ) ), vmax )
836 vcrit = bignum / vmax
837
838 END IF
839 170 CONTINUE
840
841
842
843 IF( .NOT.over ) THEN
844 CALL scopy( n-ki+1, work( ki+n ), 1, vl( ki, is ), 1 )
845
846 ii =
isamax( n-ki+1, vl( ki, is ), 1 ) + ki - 1
847 remax = one / abs( vl( ii, is ) )
848 CALL sscal( n-ki+1, remax, vl( ki, is ), 1 )
849
850 DO 180 k = 1, ki - 1
851 vl( k, is ) = zero
852 180 CONTINUE
853
854 ELSE
855
856 IF( ki.LT.n )
857 $
CALL sgemv(
'N', n, n-ki, one, vl( 1, ki+1 ), ldvl,
858 $ work( ki+1+n ), 1, work( ki+n ),
859 $ vl( 1, ki ), 1 )
860
861 ii =
isamax( n, vl( 1, ki ), 1 )
862 remax = one / abs( vl( ii, ki ) )
863 CALL sscal( n, remax, vl( 1, ki ), 1 )
864
865 END IF
866
867 ELSE
868
869
870
871
872
873
874
875 IF( abs( t( ki, ki+1 ) ).GE.abs( t( ki+1, ki ) ) ) THEN
876 work( ki+n ) = wi / t( ki, ki+1 )
877 work( ki+1+n2 ) = one
878 ELSE
879 work( ki+n ) = one
880 work( ki+1+n2 ) = -wi / t( ki+1, ki )
881 END IF
882 work( ki+1+n ) = zero
883 work( ki+n2 ) = zero
884
885
886
887 DO 190 k = ki + 2, n
888 work( k+n ) = -work( ki+n )*t( ki, k )
889 work( k+n2 ) = -work( ki+1+n2 )*t( ki+1, k )
890 190 CONTINUE
891
892
893
894
895 vmax = one
896 vcrit = bignum
897
898 jnxt = ki + 2
899 DO 200 j = ki + 2, n
900 IF( j.LT.jnxt )
901 $ GO TO 200
902 j1 = j
903 j2 = j
904 jnxt = j + 1
905 IF( j.LT.n ) THEN
906 IF( t( j+1, j ).NE.zero ) THEN
907 j2 = j + 1
908 jnxt = j + 2
909 END IF
910 END IF
911
912 IF( j1.EQ.j2 ) THEN
913
914
915
916
917
918
919 IF( work( j ).GT.vcrit ) THEN
920 rec = one / vmax
921 CALL sscal( n-ki+1, rec, work( ki+n ), 1 )
922 CALL sscal( n-ki+1, rec, work( ki+n2 ), 1 )
923 vmax = one
924 vcrit = bignum
925 END IF
926
927 work( j+n ) = work( j+n ) -
928 $
sdot( j-ki-2, t( ki+2, j ), 1,
929 $ work( ki+2+n ), 1 )
930 work( j+n2 ) = work( j+n2 ) -
931 $
sdot( j-ki-2, t( ki+2, j ), 1,
932 $ work( ki+2+n2 ), 1 )
933
934
935
936 CALL slaln2( .false., 1, 2, smin, one, t( j, j ),
937 $ ldt, one, one, work( j+n ), n, wr,
938 $ -wi, x, 2, scale, xnorm, ierr )
939
940
941
942 IF( scale.NE.one ) THEN
943 CALL sscal( n-ki+1, scale, work( ki+n ), 1 )
944 CALL sscal( n-ki+1, scale, work( ki+n2 ), 1 )
945 END IF
946 work( j+n ) = x( 1, 1 )
947 work( j+n2 ) = x( 1, 2 )
948 vmax = max( abs( work( j+n ) ),
949 $ abs( work( j+n2 ) ), vmax )
950 vcrit = bignum / vmax
951
952 ELSE
953
954
955
956
957
958
959 beta = max( work( j ), work( j+1 ) )
960 IF( beta.GT.vcrit ) THEN
961 rec = one / vmax
962 CALL sscal( n-ki+1, rec, work( ki+n ), 1 )
963 CALL sscal( n-ki+1, rec, work( ki+n2 ), 1 )
964 vmax = one
965 vcrit = bignum
966 END IF
967
968 work( j+n ) = work( j+n ) -
969 $
sdot( j-ki-2, t( ki+2, j ), 1,
970 $ work( ki+2+n ), 1 )
971
972 work( j+n2 ) = work( j+n2 ) -
973 $
sdot( j-ki-2, t( ki+2, j ), 1,
974 $ work( ki+2+n2 ), 1 )
975
976 work( j+1+n ) = work( j+1+n ) -
977 $
sdot( j-ki-2, t( ki+2, j+1 ), 1,
978 $ work( ki+2+n ), 1 )
979
980 work( j+1+n2 ) = work( j+1+n2 ) -
981 $
sdot( j-ki-2, t( ki+2, j+1 ), 1,
982 $ work( ki+2+n2 ), 1 )
983
984
985
986
987
988 CALL slaln2( .true., 2, 2, smin, one, t( j, j ),
989 $ ldt, one, one, work( j+n ), n, wr,
990 $ -wi, x, 2, scale, xnorm, ierr )
991
992
993
994 IF( scale.NE.one ) THEN
995 CALL sscal( n-ki+1, scale, work( ki+n ), 1 )
996 CALL sscal( n-ki+1, scale, work( ki+n2 ), 1 )
997 END IF
998 work( j+n ) = x( 1, 1 )
999 work( j+n2 ) = x( 1, 2 )
1000 work( j+1+n ) = x( 2, 1 )
1001 work( j+1+n2 ) = x( 2, 2 )
1002 vmax = max( abs( x( 1, 1 ) ), abs( x( 1, 2 ) ),
1003 $ abs( x( 2, 1 ) ), abs( x( 2, 2 ) ), vmax )
1004 vcrit = bignum / vmax
1005
1006 END IF
1007 200 CONTINUE
1008
1009
1010
1011 IF( .NOT.over ) THEN
1012 CALL scopy( n-ki+1, work( ki+n ), 1, vl( ki, is ), 1 )
1013 CALL scopy( n-ki+1, work( ki+n2 ), 1, vl( ki, is+1 ),
1014 $ 1 )
1015
1016 emax = zero
1017 DO 220 k = ki, n
1018 emax = max( emax, abs( vl( k, is ) )+
1019 $ abs( vl( k, is+1 ) ) )
1020 220 CONTINUE
1021 remax = one / emax
1022 CALL sscal( n-ki+1, remax, vl( ki, is ), 1 )
1023 CALL sscal( n-ki+1, remax, vl( ki, is+1 ), 1 )
1024
1025 DO 230 k = 1, ki - 1
1026 vl( k, is ) = zero
1027 vl( k, is+1 ) = zero
1028 230 CONTINUE
1029 ELSE
1030 IF( ki.LT.n-1 ) THEN
1031 CALL sgemv(
'N', n, n-ki-1, one, vl( 1, ki+2 ),
1032 $ ldvl, work( ki+2+n ), 1, work( ki+n ),
1033 $ vl( 1, ki ), 1 )
1034 CALL sgemv(
'N', n, n-ki-1, one, vl( 1, ki+2 ),
1035 $ ldvl, work( ki+2+n2 ), 1,
1036 $ work( ki+1+n2 ), vl( 1, ki+1 ), 1 )
1037 ELSE
1038 CALL sscal( n, work( ki+n ), vl( 1, ki ), 1 )
1039 CALL sscal( n, work( ki+1+n2 ), vl( 1, ki+1 ), 1 )
1040 END IF
1041
1042 emax = zero
1043 DO 240 k = 1, n
1044 emax = max( emax, abs( vl( k, ki ) )+
1045 $ abs( vl( k, ki+1 ) ) )
1046 240 CONTINUE
1047 remax = one / emax
1048 CALL sscal( n, remax, vl( 1, ki ), 1 )
1049 CALL sscal( n, remax, vl( 1, ki+1 ), 1 )
1050
1051 END IF
1052
1053 END IF
1054
1055 is = is + 1
1056 IF( ip.NE.0 )
1057 $ is = is + 1
1058 250 CONTINUE
1059 IF( ip.EQ.-1 )
1060 $ ip = 0
1061 IF( ip.EQ.1 )
1062 $ ip = -1
1063
1064 260 CONTINUE
1065
1066 END IF
1067
1068 RETURN
1069
1070
1071
subroutine xerbla(srname, info)
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
real function sdot(n, sx, incx, sy, incy)
SDOT
subroutine sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SGEMV
integer function isamax(n, sx, incx)
ISAMAX
subroutine slaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2, b, ldb, wr, wi, x, ldx, scale, xnorm, info)
SLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.
real function slamch(cmach)
SLAMCH
logical function lsame(ca, cb)
LSAME
subroutine sscal(n, sa, sx, incx)
SSCAL