LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zdrgvx | ( | integer | nsize, |
double precision | thresh, | ||
integer | nin, | ||
integer | nout, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( lda, * ) | b, | ||
complex*16, dimension( lda, * ) | ai, | ||
complex*16, dimension( lda, * ) | bi, | ||
complex*16, dimension( * ) | alpha, | ||
complex*16, dimension( * ) | beta, | ||
complex*16, dimension( lda, * ) | vl, | ||
complex*16, dimension( lda, * ) | vr, | ||
integer | ilo, | ||
integer | ihi, | ||
double precision, dimension( * ) | lscale, | ||
double precision, dimension( * ) | rscale, | ||
double precision, dimension( * ) | s, | ||
double precision, dimension( * ) | dtru, | ||
double precision, dimension( * ) | dif, | ||
double precision, dimension( * ) | diftru, | ||
complex*16, dimension( * ) | work, | ||
integer | lwork, | ||
double precision, dimension( * ) | rwork, | ||
integer, dimension( * ) | iwork, | ||
integer | liwork, | ||
double precision, dimension( 4 ) | result, | ||
logical, dimension( * ) | bwork, | ||
integer | info ) |
ZDRGVX
!> !> ZDRGVX checks the nonsymmetric generalized eigenvalue problem !> expert driver ZGGEVX. !> !> ZGGEVX computes the generalized eigenvalues, (optionally) the left !> and/or right eigenvectors, (optionally) computes a balancing !> transformation to improve the conditioning, and (optionally) !> reciprocal condition numbers for the eigenvalues and eigenvectors. !> !> When ZDRGVX is called with NSIZE > 0, two types of test matrix pairs !> are generated by the subroutine DLATM6 and test the driver ZGGEVX. !> The test matrices have the known exact condition numbers for !> eigenvalues. For the condition numbers of the eigenvectors !> corresponding the first and last eigenvalues are also know !> ``exactly'' (see ZLATM6). !> For each matrix pair, the following tests will be performed and !> compared with the threshold THRESH. !> !> (1) max over all left eigenvalue/-vector pairs (beta/alpha,l) of !> !> | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) ) !> !> where l**H is the conjugate transpose of l. !> !> (2) max over all right eigenvalue/-vector pairs (beta/alpha,r) of !> !> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) ) !> !> (3) The condition number S(i) of eigenvalues computed by ZGGEVX !> differs less than a factor THRESH from the exact S(i) (see !> ZLATM6). !> !> (4) DIF(i) computed by ZTGSNA differs less than a factor 10*THRESH !> from the exact value (for the 1st and 5th vectors only). !> !> Test Matrices !> ============= !> !> Two kinds of test matrix pairs !> (A, B) = inverse(YH) * (Da, Db) * inverse(X) !> are used in the tests: !> !> 1: Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 !> 0 2+a 0 0 0 0 1 0 0 0 !> 0 0 3+a 0 0 0 0 1 0 0 !> 0 0 0 4+a 0 0 0 0 1 0 !> 0 0 0 0 5+a , 0 0 0 0 1 , and !> !> 2: Da = 1 -1 0 0 0 Db = 1 0 0 0 0 !> 1 1 0 0 0 0 1 0 0 0 !> 0 0 1 0 0 0 0 1 0 0 !> 0 0 0 1+a 1+b 0 0 0 1 0 !> 0 0 0 -1-b 1+a , 0 0 0 0 1 . !> !> In both cases the same inverse(YH) and inverse(X) are used to compute !> (A, B), giving the exact eigenvectors to (A,B) as (YH, X): !> !> YH: = 1 0 -y y -y X = 1 0 -x -x x !> 0 1 -y y -y 0 1 x -x -x !> 0 0 1 0 0 0 0 1 0 0 !> 0 0 0 1 0 0 0 0 1 0 !> 0 0 0 0 1, 0 0 0 0 1 , where !> !> a, b, x and y will have all values independently of each other from !> { sqrt(sqrt(ULP)), 0.1, 1, 10, 1/sqrt(sqrt(ULP)) }. !>
[in] | NSIZE | !> NSIZE is INTEGER !> The number of sizes of matrices to use. NSIZE must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIN will be !> tested. If it is not zero, then N = 5. !> |
[in] | THRESH | !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
[in] | NIN | !> NIN is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
[in] | NOUT | !> NOUT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
[out] | A | !> A is COMPLEX*16 array, dimension (LDA, NSIZE) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, AI, BI, Ao, and Bo. !> It must be at least 1 and at least NSIZE. !> |
[out] | B | !> B is COMPLEX*16 array, dimension (LDA, NSIZE) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, B contains the last matrix actually used. !> |
[out] | AI | !> AI is COMPLEX*16 array, dimension (LDA, NSIZE) !> Copy of A, modified by ZGGEVX. !> |
[out] | BI | !> BI is COMPLEX*16 array, dimension (LDA, NSIZE) !> Copy of B, modified by ZGGEVX. !> |
[out] | ALPHA | !> ALPHA is COMPLEX*16 array, dimension (NSIZE) !> |
[out] | BETA | !> BETA is COMPLEX*16 array, dimension (NSIZE) !> !> On exit, ALPHA/BETA are the eigenvalues. !> |
[out] | VL | !> VL is COMPLEX*16 array, dimension (LDA, NSIZE) !> VL holds the left eigenvectors computed by ZGGEVX. !> |
[out] | VR | !> VR is COMPLEX*16 array, dimension (LDA, NSIZE) !> VR holds the right eigenvectors computed by ZGGEVX. !> |
[out] | ILO | !> ILO is INTEGER !> |
[out] | IHI | !> IHI is INTEGER !> |
[out] | LSCALE | !> LSCALE is DOUBLE PRECISION array, dimension (N) !> |
[out] | RSCALE | !> RSCALE is DOUBLE PRECISION array, dimension (N) !> |
[out] | S | !> S is DOUBLE PRECISION array, dimension (N) !> |
[out] | DTRU | !> DTRU is DOUBLE PRECISION array, dimension (N) !> |
[out] | DIF | !> DIF is DOUBLE PRECISION array, dimension (N) !> |
[out] | DIFTRU | !> DIFTRU is DOUBLE PRECISION array, dimension (N) !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
[in] | LWORK | !> LWORK is INTEGER !> Leading dimension of WORK. LWORK >= 2*N*N + 2*N !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (6*N) !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> |
[in] | LIWORK | !> LIWORK is INTEGER !> Leading dimension of IWORK. LIWORK >= N+2. !> |
[out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (4) !> |
[out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. !> |
Definition at line 293 of file zdrgvx.f.