LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cunbdb1.f
Go to the documentation of this file.
1*> \brief \b CUNBDB1
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CUNBDB1 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb1.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb1.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb1.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
22* TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
23*
24* .. Scalar Arguments ..
25* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
26* ..
27* .. Array Arguments ..
28* REAL PHI(*), THETA(*)
29* COMPLEX TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
30* $ X11(LDX11,*), X21(LDX21,*)
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*>\verbatim
38*>
39*> CUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
40*> matrix X with orthonormal columns:
41*>
42*> [ B11 ]
43*> [ X11 ] [ P1 | ] [ 0 ]
44*> [-----] = [---------] [-----] Q1**T .
45*> [ X21 ] [ | P2 ] [ B21 ]
46*> [ 0 ]
47*>
48*> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
49*> M-P, or M-Q. Routines CUNBDB2, CUNBDB3, and CUNBDB4 handle cases in
50*> which Q is not the minimum dimension.
51*>
52*> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
53*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
54*> Householder vectors.
55*>
56*> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
57*> angles THETA, PHI.
58*>
59*>\endverbatim
60*
61* Arguments:
62* ==========
63*
64*> \param[in] M
65*> \verbatim
66*> M is INTEGER
67*> The number of rows X11 plus the number of rows in X21.
68*> \endverbatim
69*>
70*> \param[in] P
71*> \verbatim
72*> P is INTEGER
73*> The number of rows in X11. 0 <= P <= M.
74*> \endverbatim
75*>
76*> \param[in] Q
77*> \verbatim
78*> Q is INTEGER
79*> The number of columns in X11 and X21. 0 <= Q <=
80*> MIN(P,M-P,M-Q).
81*> \endverbatim
82*>
83*> \param[in,out] X11
84*> \verbatim
85*> X11 is COMPLEX array, dimension (LDX11,Q)
86*> On entry, the top block of the matrix X to be reduced. On
87*> exit, the columns of tril(X11) specify reflectors for P1 and
88*> the rows of triu(X11,1) specify reflectors for Q1.
89*> \endverbatim
90*>
91*> \param[in] LDX11
92*> \verbatim
93*> LDX11 is INTEGER
94*> The leading dimension of X11. LDX11 >= P.
95*> \endverbatim
96*>
97*> \param[in,out] X21
98*> \verbatim
99*> X21 is COMPLEX array, dimension (LDX21,Q)
100*> On entry, the bottom block of the matrix X to be reduced. On
101*> exit, the columns of tril(X21) specify reflectors for P2.
102*> \endverbatim
103*>
104*> \param[in] LDX21
105*> \verbatim
106*> LDX21 is INTEGER
107*> The leading dimension of X21. LDX21 >= M-P.
108*> \endverbatim
109*>
110*> \param[out] THETA
111*> \verbatim
112*> THETA is REAL array, dimension (Q)
113*> The entries of the bidiagonal blocks B11, B21 are defined by
114*> THETA and PHI. See Further Details.
115*> \endverbatim
116*>
117*> \param[out] PHI
118*> \verbatim
119*> PHI is REAL array, dimension (Q-1)
120*> The entries of the bidiagonal blocks B11, B21 are defined by
121*> THETA and PHI. See Further Details.
122*> \endverbatim
123*>
124*> \param[out] TAUP1
125*> \verbatim
126*> TAUP1 is COMPLEX array, dimension (P)
127*> The scalar factors of the elementary reflectors that define
128*> P1.
129*> \endverbatim
130*>
131*> \param[out] TAUP2
132*> \verbatim
133*> TAUP2 is COMPLEX array, dimension (M-P)
134*> The scalar factors of the elementary reflectors that define
135*> P2.
136*> \endverbatim
137*>
138*> \param[out] TAUQ1
139*> \verbatim
140*> TAUQ1 is COMPLEX array, dimension (Q)
141*> The scalar factors of the elementary reflectors that define
142*> Q1.
143*> \endverbatim
144*>
145*> \param[out] WORK
146*> \verbatim
147*> WORK is COMPLEX array, dimension (LWORK)
148*> \endverbatim
149*>
150*> \param[in] LWORK
151*> \verbatim
152*> LWORK is INTEGER
153*> The dimension of the array WORK. LWORK >= M-Q.
154*>
155*> If LWORK = -1, then a workspace query is assumed; the routine
156*> only calculates the optimal size of the WORK array, returns
157*> this value as the first entry of the WORK array, and no error
158*> message related to LWORK is issued by XERBLA.
159*> \endverbatim
160*>
161*> \param[out] INFO
162*> \verbatim
163*> INFO is INTEGER
164*> = 0: successful exit.
165*> < 0: if INFO = -i, the i-th argument had an illegal value.
166*> \endverbatim
167*
168* Authors:
169* ========
170*
171*> \author Univ. of Tennessee
172*> \author Univ. of California Berkeley
173*> \author Univ. of Colorado Denver
174*> \author NAG Ltd.
175*
176*> \ingroup unbdb1
177*
178*> \par Further Details:
179* =====================
180
181*> \verbatim
182*>
183*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
184*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
185*> in each bidiagonal band is a product of a sine or cosine of a THETA
186*> with a sine or cosine of a PHI. See [1] or CUNCSD for details.
187*>
188*> P1, P2, and Q1 are represented as products of elementary reflectors.
189*> See CUNCSD2BY1 for details on generating P1, P2, and Q1 using CUNGQR
190*> and CUNGLQ.
191*> \endverbatim
192*
193*> \par References:
194* ================
195*>
196*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
197*> Algorithms, 50(1):33-65, 2009.
198*>
199* =====================================================================
200 SUBROUTINE cunbdb1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
201 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
202*
203* -- LAPACK computational routine --
204* -- LAPACK is a software package provided by Univ. of Tennessee, --
205* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
206*
207* .. Scalar Arguments ..
208 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
209* ..
210* .. Array Arguments ..
211 REAL PHI(*), THETA(*)
212 COMPLEX TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
213 $ x11(ldx11,*), x21(ldx21,*)
214* ..
215*
216* ====================================================================
217*
218* .. Parameters ..
219 COMPLEX ONE
220 parameter( one = (1.0e0,0.0e0) )
221* ..
222* .. Local Scalars ..
223 REAL C, S
224 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
225 $ lworkmin, lworkopt
226 LOGICAL LQUERY
227* ..
228* .. External Subroutines ..
229 EXTERNAL clarf, clarfgp, cunbdb5, csrot, xerbla
230 EXTERNAL clacgv
231* ..
232* .. External Functions ..
233 REAL SCNRM2, SROUNDUP_LWORK
234 EXTERNAL scnrm2, sroundup_lwork
235* ..
236* .. Intrinsic Function ..
237 INTRINSIC atan2, cos, max, sin, sqrt
238* ..
239* .. Executable Statements ..
240*
241* Test input arguments
242*
243 info = 0
244 lquery = lwork .EQ. -1
245*
246 IF( m .LT. 0 ) THEN
247 info = -1
248 ELSE IF( p .LT. q .OR. m-p .LT. q ) THEN
249 info = -2
250 ELSE IF( q .LT. 0 .OR. m-q .LT. q ) THEN
251 info = -3
252 ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
253 info = -5
254 ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
255 info = -7
256 END IF
257*
258* Compute workspace
259*
260 IF( info .EQ. 0 ) THEN
261 ilarf = 2
262 llarf = max( p-1, m-p-1, q-1 )
263 iorbdb5 = 2
264 lorbdb5 = q-2
265 lworkopt = max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
266 lworkmin = lworkopt
267 work(1) = sroundup_lwork(lworkopt)
268 IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
269 info = -14
270 END IF
271 END IF
272 IF( info .NE. 0 ) THEN
273 CALL xerbla( 'CUNBDB1', -info )
274 RETURN
275 ELSE IF( lquery ) THEN
276 RETURN
277 END IF
278*
279* Reduce columns 1, ..., Q of X11 and X21
280*
281 DO i = 1, q
282*
283 CALL clarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
284 CALL clarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1, taup2(i) )
285 theta(i) = atan2( real( x21(i,i) ), real( x11(i,i) ) )
286 c = cos( theta(i) )
287 s = sin( theta(i) )
288 x11(i,i) = one
289 x21(i,i) = one
290 CALL clarf( 'L', p-i+1, q-i, x11(i,i), 1, conjg(taup1(i)),
291 $ x11(i,i+1), ldx11, work(ilarf) )
292 CALL clarf( 'L', m-p-i+1, q-i, x21(i,i), 1, conjg(taup2(i)),
293 $ x21(i,i+1), ldx21, work(ilarf) )
294*
295 IF( i .LT. q ) THEN
296 CALL csrot( q-i, x11(i,i+1), ldx11, x21(i,i+1), ldx21, c,
297 $ s )
298 CALL clacgv( q-i, x21(i,i+1), ldx21 )
299 CALL clarfgp( q-i, x21(i,i+1), x21(i,i+2), ldx21, tauq1(i) )
300 s = real( x21(i,i+1) )
301 x21(i,i+1) = one
302 CALL clarf( 'R', p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
303 $ x11(i+1,i+1), ldx11, work(ilarf) )
304 CALL clarf( 'R', m-p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
305 $ x21(i+1,i+1), ldx21, work(ilarf) )
306 CALL clacgv( q-i, x21(i,i+1), ldx21 )
307 c = sqrt( scnrm2( p-i, x11(i+1,i+1), 1 )**2
308 $ + scnrm2( m-p-i, x21(i+1,i+1), 1 )**2 )
309 phi(i) = atan2( s, c )
310 CALL cunbdb5( p-i, m-p-i, q-i-1, x11(i+1,i+1), 1,
311 $ x21(i+1,i+1), 1, x11(i+1,i+2), ldx11,
312 $ x21(i+1,i+2), ldx21, work(iorbdb5), lorbdb5,
313 $ childinfo )
314 END IF
315*
316 END DO
317*
318 RETURN
319*
320* End of CUNBDB1
321*
322 END
323
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:74
subroutine clarf(side, m, n, v, incv, tau, c, ldc, work)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition clarf.f:128
subroutine clarfgp(n, alpha, x, incx, tau)
CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition clarfgp.f:104
subroutine csrot(n, cx, incx, cy, incy, c, s)
CSROT
Definition csrot.f:98
subroutine cunbdb1(m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info)
CUNBDB1
Definition cunbdb1.f:202
subroutine cunbdb5(m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)
CUNBDB5
Definition cunbdb5.f:156