LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ csrot()

subroutine csrot ( integer  n,
complex, dimension( * )  cx,
integer  incx,
complex, dimension( * )  cy,
integer  incy,
real  c,
real  s 
)

CSROT

Purpose:
 CSROT applies a plane rotation, where the cos and sin (c and s) are real
 and the vectors cx and cy are complex.
 jack dongarra, linpack, 3/11/78.
Parameters
[in]N
          N is INTEGER
           On entry, N specifies the order of the vectors cx and cy.
           N must be at least zero.
[in,out]CX
          CX is COMPLEX array, dimension at least
           ( 1 + ( N - 1 )*abs( INCX ) ).
           Before entry, the incremented array CX must contain the n
           element vector cx. On exit, CX is overwritten by the updated
           vector cx.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           CX. INCX must not be zero.
[in,out]CY
          CY is COMPLEX array, dimension at least
           ( 1 + ( N - 1 )*abs( INCY ) ).
           Before entry, the incremented array CY must contain the n
           element vector cy. On exit, CY is overwritten by the updated
           vector cy.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           CY. INCY must not be zero.
[in]C
          C is REAL
           On entry, C specifies the cosine, cos.
[in]S
          S is REAL
           On entry, S specifies the sine, sin.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 97 of file csrot.f.

98*
99* -- Reference BLAS level1 routine --
100* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
101* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102*
103* .. Scalar Arguments ..
104 INTEGER INCX, INCY, N
105 REAL C, S
106* ..
107* .. Array Arguments ..
108 COMPLEX CX( * ), CY( * )
109* ..
110*
111* =====================================================================
112*
113* .. Local Scalars ..
114 INTEGER I, IX, IY
115 COMPLEX CTEMP
116* ..
117* .. Executable Statements ..
118*
119 IF( n.LE.0 )
120 $ RETURN
121 IF( incx.EQ.1 .AND. incy.EQ.1 ) THEN
122*
123* code for both increments equal to 1
124*
125 DO i = 1, n
126 ctemp = c*cx( i ) + s*cy( i )
127 cy( i ) = c*cy( i ) - s*cx( i )
128 cx( i ) = ctemp
129 END DO
130 ELSE
131*
132* code for unequal increments or equal increments not equal
133* to 1
134*
135 ix = 1
136 iy = 1
137 IF( incx.LT.0 )
138 $ ix = ( -n+1 )*incx + 1
139 IF( incy.LT.0 )
140 $ iy = ( -n+1 )*incy + 1
141 DO i = 1, n
142 ctemp = c*cx( ix ) + s*cy( iy )
143 cy( iy ) = c*cy( iy ) - s*cx( ix )
144 cx( ix ) = ctemp
145 ix = ix + incx
146 iy = iy + incy
147 END DO
148 END IF
149 RETURN
150*
151* End of CSROT
152*
Here is the caller graph for this function: