LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ chseqr()

subroutine chseqr ( character  job,
character  compz,
integer  n,
integer  ilo,
integer  ihi,
complex, dimension( ldh, * )  h,
integer  ldh,
complex, dimension( * )  w,
complex, dimension( ldz, * )  z,
integer  ldz,
complex, dimension( * )  work,
integer  lwork,
integer  info 
)

CHSEQR

Download CHSEQR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    CHSEQR computes the eigenvalues of a Hessenberg matrix H
    and, optionally, the matrices T and Z from the Schur decomposition
    H = Z T Z**H, where T is an upper triangular matrix (the
    Schur form), and Z is the unitary matrix of Schur vectors.

    Optionally Z may be postmultiplied into an input unitary
    matrix Q so that this routine can give the Schur factorization
    of a matrix A which has been reduced to the Hessenberg form H
    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*T*(QZ)**H.
Parameters
[in]JOB
          JOB is CHARACTER*1
           = 'E':  compute eigenvalues only;
           = 'S':  compute eigenvalues and the Schur form T.
[in]COMPZ
          COMPZ is CHARACTER*1
           = 'N':  no Schur vectors are computed;
           = 'I':  Z is initialized to the unit matrix and the matrix Z
                   of Schur vectors of H is returned;
           = 'V':  Z must contain an unitary matrix Q on entry, and
                   the product Q*Z is returned.
[in]N
          N is INTEGER
           The order of the matrix H.  N >= 0.
[in]ILO
          ILO is INTEGER
[in]IHI
          IHI is INTEGER

           It is assumed that H is already upper triangular in rows
           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
           set by a previous call to CGEBAL, and then passed to ZGEHRD
           when the matrix output by CGEBAL is reduced to Hessenberg
           form. Otherwise ILO and IHI should be set to 1 and N
           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
           If N = 0, then ILO = 1 and IHI = 0.
[in,out]H
          H is COMPLEX array, dimension (LDH,N)
           On entry, the upper Hessenberg matrix H.
           On exit, if INFO = 0 and JOB = 'S', H contains the upper
           triangular matrix T from the Schur decomposition (the
           Schur form). If INFO = 0 and JOB = 'E', the contents of
           H are unspecified on exit.  (The output value of H when
           INFO > 0 is given under the description of INFO below.)

           Unlike earlier versions of CHSEQR, this subroutine may
           explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
           or j = IHI+1, IHI+2, ... N.
[in]LDH
          LDH is INTEGER
           The leading dimension of the array H. LDH >= max(1,N).
[out]W
          W is COMPLEX array, dimension (N)
           The computed eigenvalues. If JOB = 'S', the eigenvalues are
           stored in the same order as on the diagonal of the Schur
           form returned in H, with W(i) = H(i,i).
[in,out]Z
          Z is COMPLEX array, dimension (LDZ,N)
           If COMPZ = 'N', Z is not referenced.
           If COMPZ = 'I', on entry Z need not be set and on exit,
           if INFO = 0, Z contains the unitary matrix Z of the Schur
           vectors of H.  If COMPZ = 'V', on entry Z must contain an
           N-by-N matrix Q, which is assumed to be equal to the unit
           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
           if INFO = 0, Z contains Q*Z.
           Normally Q is the unitary matrix generated by CUNGHR
           after the call to CGEHRD which formed the Hessenberg matrix
           H. (The output value of Z when INFO > 0 is given under
           the description of INFO below.)
[in]LDZ
          LDZ is INTEGER
           The leading dimension of the array Z.  if COMPZ = 'I' or
           COMPZ = 'V', then LDZ >= MAX(1,N).  Otherwise, LDZ >= 1.
[out]WORK
          WORK is COMPLEX array, dimension (LWORK)
           On exit, if INFO = 0, WORK(1) returns an estimate of
           the optimal value for LWORK.
[in]LWORK
          LWORK is INTEGER
           The dimension of the array WORK.  LWORK >= max(1,N)
           is sufficient and delivers very good and sometimes
           optimal performance.  However, LWORK as large as 11*N
           may be required for optimal performance.  A workspace
           query is recommended to determine the optimal workspace
           size.

           If LWORK = -1, then CHSEQR does a workspace query.
           In this case, CHSEQR checks the input parameters and
           estimates the optimal workspace size for the given
           values of N, ILO and IHI.  The estimate is returned
           in WORK(1).  No error message related to LWORK is
           issued by XERBLA.  Neither H nor Z are accessed.
[out]INFO
          INFO is INTEGER
             = 0:  successful exit
             < 0:  if INFO = -i, the i-th argument had an illegal
                    value
             > 0:  if INFO = i, CHSEQR failed to compute all of
                the eigenvalues.  Elements 1:ilo-1 and i+1:n of W
                contain those eigenvalues which have been
                successfully computed.  (Failures are rare.)

                If INFO > 0 and JOB = 'E', then on exit, the
                remaining unconverged eigenvalues are the eigen-
                values of the upper Hessenberg matrix rows and
                columns ILO through INFO of the final, output
                value of H.

                If INFO > 0 and JOB   = 'S', then on exit

           (*)  (initial value of H)*U  = U*(final value of H)

                where U is a unitary matrix.  The final
                value of  H is upper Hessenberg and triangular in
                rows and columns INFO+1 through IHI.

                If INFO > 0 and COMPZ = 'V', then on exit

                  (final value of Z)  =  (initial value of Z)*U

                where U is the unitary matrix in (*) (regard-
                less of the value of JOB.)

                If INFO > 0 and COMPZ = 'I', then on exit
                      (final value of Z)  = U
                where U is the unitary matrix in (*) (regard-
                less of the value of JOB.)

                If INFO > 0 and COMPZ = 'N', then Z is not
                accessed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA
Further Details:
             Default values supplied by
             ILAENV(ISPEC,'CHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
             It is suggested that these defaults be adjusted in order
             to attain best performance in each particular
             computational environment.

            ISPEC=12: The CLAHQR vs CLAQR0 crossover point.
                      Default: 75. (Must be at least 11.)

            ISPEC=13: Recommended deflation window size.
                      This depends on ILO, IHI and NS.  NS is the
                      number of simultaneous shifts returned
                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
                      The default for (IHI-ILO+1) <= 500 is NS.
                      The default for (IHI-ILO+1) >  500 is 3*NS/2.

            ISPEC=14: Nibble crossover point. (See IPARMQ for
                      details.)  Default: 14% of deflation window
                      size.

            ISPEC=15: Number of simultaneous shifts in a multishift
                      QR iteration.

                      If IHI-ILO+1 is ...

                      greater than      ...but less    ... the
                      or equal to ...      than        default is

                           1               30          NS =   2(+)
                          30               60          NS =   4(+)
                          60              150          NS =  10(+)
                         150              590          NS =  **
                         590             3000          NS =  64
                        3000             6000          NS = 128
                        6000             infinity      NS = 256

                  (+)  By default some or all matrices of this order
                       are passed to the implicit double shift routine
                       CLAHQR and this parameter is ignored.  See
                       ISPEC=12 above and comments in IPARMQ for
                       details.

                 (**)  The asterisks (**) indicate an ad-hoc
                       function of N increasing from 10 to 64.

            ISPEC=16: Select structured matrix multiply.
                      If the number of simultaneous shifts (specified
                      by ISPEC=15) is less than 14, then the default
                      for ISPEC=16 is 0.  Otherwise the default for
                      ISPEC=16 is 2.
References:
  K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  929--947, 2002.

K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948–973, 2002.

Definition at line 297 of file chseqr.f.

299*
300* -- LAPACK computational routine --
301* -- LAPACK is a software package provided by Univ. of Tennessee, --
302* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
303*
304* .. Scalar Arguments ..
305 INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
306 CHARACTER COMPZ, JOB
307* ..
308* .. Array Arguments ..
309 COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
310* ..
311*
312* =====================================================================
313*
314* .. Parameters ..
315*
316* ==== Matrices of order NTINY or smaller must be processed by
317* . CLAHQR because of insufficient subdiagonal scratch space.
318* . (This is a hard limit.) ====
319 INTEGER NTINY
320 parameter( ntiny = 15 )
321*
322* ==== NL allocates some local workspace to help small matrices
323* . through a rare CLAHQR failure. NL > NTINY = 15 is
324* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
325* . mended. (The default value of NMIN is 75.) Using NL = 49
326* . allows up to six simultaneous shifts and a 16-by-16
327* . deflation window. ====
328 INTEGER NL
329 parameter( nl = 49 )
330 COMPLEX ZERO, ONE
331 parameter( zero = ( 0.0e0, 0.0e0 ),
332 $ one = ( 1.0e0, 0.0e0 ) )
333 REAL RZERO
334 parameter( rzero = 0.0e0 )
335* ..
336* .. Local Arrays ..
337 COMPLEX HL( NL, NL ), WORKL( NL )
338* ..
339* .. Local Scalars ..
340 INTEGER KBOT, NMIN
341 LOGICAL INITZ, LQUERY, WANTT, WANTZ
342* ..
343* .. External Functions ..
344 INTEGER ILAENV
345 LOGICAL LSAME
346 REAL SROUNDUP_LWORK
347 EXTERNAL ilaenv, lsame, sroundup_lwork
348* ..
349* .. External Subroutines ..
350 EXTERNAL ccopy, clacpy, clahqr, claqr0, claset, xerbla
351* ..
352* .. Intrinsic Functions ..
353 INTRINSIC cmplx, max, min, real
354* ..
355* .. Executable Statements ..
356*
357* ==== Decode and check the input parameters. ====
358*
359 wantt = lsame( job, 'S' )
360 initz = lsame( compz, 'I' )
361 wantz = initz .OR. lsame( compz, 'V' )
362 work( 1 ) = cmplx( real( max( 1, n ) ), rzero )
363 lquery = lwork.EQ.-1
364*
365 info = 0
366 IF( .NOT.lsame( job, 'E' ) .AND. .NOT.wantt ) THEN
367 info = -1
368 ELSE IF( .NOT.lsame( compz, 'N' ) .AND. .NOT.wantz ) THEN
369 info = -2
370 ELSE IF( n.LT.0 ) THEN
371 info = -3
372 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
373 info = -4
374 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
375 info = -5
376 ELSE IF( ldh.LT.max( 1, n ) ) THEN
377 info = -7
378 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.max( 1, n ) ) ) THEN
379 info = -10
380 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
381 info = -12
382 END IF
383*
384 IF( info.NE.0 ) THEN
385*
386* ==== Quick return in case of invalid argument. ====
387*
388 CALL xerbla( 'CHSEQR', -info )
389 RETURN
390*
391 ELSE IF( n.EQ.0 ) THEN
392*
393* ==== Quick return in case N = 0; nothing to do. ====
394*
395 RETURN
396*
397 ELSE IF( lquery ) THEN
398*
399* ==== Quick return in case of a workspace query ====
400*
401 CALL claqr0( wantt, wantz, n, ilo, ihi, h, ldh, w, ilo, ihi, z,
402 $ ldz, work, lwork, info )
403* ==== Ensure reported workspace size is backward-compatible with
404* . previous LAPACK versions. ====
405 work( 1 ) = cmplx( max( real( work( 1 ) ), real( max( 1,
406 $ n ) ) ), rzero )
407 RETURN
408*
409 ELSE
410*
411* ==== copy eigenvalues isolated by CGEBAL ====
412*
413 IF( ilo.GT.1 )
414 $ CALL ccopy( ilo-1, h, ldh+1, w, 1 )
415 IF( ihi.LT.n )
416 $ CALL ccopy( n-ihi, h( ihi+1, ihi+1 ), ldh+1, w( ihi+1 ), 1 )
417*
418* ==== Initialize Z, if requested ====
419*
420 IF( initz )
421 $ CALL claset( 'A', n, n, zero, one, z, ldz )
422*
423* ==== Quick return if possible ====
424*
425 IF( ilo.EQ.ihi ) THEN
426 w( ilo ) = h( ilo, ilo )
427 RETURN
428 END IF
429*
430* ==== CLAHQR/CLAQR0 crossover point ====
431*
432 nmin = ilaenv( 12, 'CHSEQR', job( : 1 ) // compz( : 1 ), n,
433 $ ilo, ihi, lwork )
434 nmin = max( ntiny, nmin )
435*
436* ==== CLAQR0 for big matrices; CLAHQR for small ones ====
437*
438 IF( n.GT.nmin ) THEN
439 CALL claqr0( wantt, wantz, n, ilo, ihi, h, ldh, w, ilo, ihi,
440 $ z, ldz, work, lwork, info )
441 ELSE
442*
443* ==== Small matrix ====
444*
445 CALL clahqr( wantt, wantz, n, ilo, ihi, h, ldh, w, ilo, ihi,
446 $ z, ldz, info )
447*
448 IF( info.GT.0 ) THEN
449*
450* ==== A rare CLAHQR failure! CLAQR0 sometimes succeeds
451* . when CLAHQR fails. ====
452*
453 kbot = info
454*
455 IF( n.GE.nl ) THEN
456*
457* ==== Larger matrices have enough subdiagonal scratch
458* . space to call CLAQR0 directly. ====
459*
460 CALL claqr0( wantt, wantz, n, ilo, kbot, h, ldh, w,
461 $ ilo, ihi, z, ldz, work, lwork, info )
462*
463 ELSE
464*
465* ==== Tiny matrices don't have enough subdiagonal
466* . scratch space to benefit from CLAQR0. Hence,
467* . tiny matrices must be copied into a larger
468* . array before calling CLAQR0. ====
469*
470 CALL clacpy( 'A', n, n, h, ldh, hl, nl )
471 hl( n+1, n ) = zero
472 CALL claset( 'A', nl, nl-n, zero, zero, hl( 1, n+1 ),
473 $ nl )
474 CALL claqr0( wantt, wantz, nl, ilo, kbot, hl, nl, w,
475 $ ilo, ihi, z, ldz, workl, nl, info )
476 IF( wantt .OR. info.NE.0 )
477 $ CALL clacpy( 'A', n, n, hl, nl, h, ldh )
478 END IF
479 END IF
480 END IF
481*
482* ==== Clear out the trash, if necessary. ====
483*
484 IF( ( wantt .OR. info.NE.0 ) .AND. n.GT.2 )
485 $ CALL claset( 'L', n-2, n-2, zero, zero, h( 3, 1 ), ldh )
486*
487* ==== Ensure reported workspace size is backward-compatible with
488* . previous LAPACK versions. ====
489*
490 work( 1 ) = cmplx( max( real( max( 1, n ) ),
491 $ real( work( 1 ) ) ), rzero )
492 END IF
493*
494* ==== End of CHSEQR ====
495*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
subroutine clahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition clahqr.f:195
subroutine claqr0(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork, info)
CLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition claqr0.f:240
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: