LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
claqr0.f
Go to the documentation of this file.
1*> \brief \b CLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CLAQR0 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr0.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr0.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr0.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
20* IHIZ, Z, LDZ, WORK, LWORK, INFO )
21*
22* .. Scalar Arguments ..
23* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
24* LOGICAL WANTT, WANTZ
25* ..
26* .. Array Arguments ..
27* COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CLAQR0 computes the eigenvalues of a Hessenberg matrix H
37*> and, optionally, the matrices T and Z from the Schur decomposition
38*> H = Z T Z**H, where T is an upper triangular matrix (the
39*> Schur form), and Z is the unitary matrix of Schur vectors.
40*>
41*> Optionally Z may be postmultiplied into an input unitary
42*> matrix Q so that this routine can give the Schur factorization
43*> of a matrix A which has been reduced to the Hessenberg form H
44*> by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H.
45*> \endverbatim
46*
47* Arguments:
48* ==========
49*
50*> \param[in] WANTT
51*> \verbatim
52*> WANTT is LOGICAL
53*> = .TRUE. : the full Schur form T is required;
54*> = .FALSE.: only eigenvalues are required.
55*> \endverbatim
56*>
57*> \param[in] WANTZ
58*> \verbatim
59*> WANTZ is LOGICAL
60*> = .TRUE. : the matrix of Schur vectors Z is required;
61*> = .FALSE.: Schur vectors are not required.
62*> \endverbatim
63*>
64*> \param[in] N
65*> \verbatim
66*> N is INTEGER
67*> The order of the matrix H. N >= 0.
68*> \endverbatim
69*>
70*> \param[in] ILO
71*> \verbatim
72*> ILO is INTEGER
73*> \endverbatim
74*>
75*> \param[in] IHI
76*> \verbatim
77*> IHI is INTEGER
78*> It is assumed that H is already upper triangular in rows
79*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
80*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
81*> previous call to CGEBAL, and then passed to CGEHRD when the
82*> matrix output by CGEBAL is reduced to Hessenberg form.
83*> Otherwise, ILO and IHI should be set to 1 and N,
84*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
85*> If N = 0, then ILO = 1 and IHI = 0.
86*> \endverbatim
87*>
88*> \param[in,out] H
89*> \verbatim
90*> H is COMPLEX array, dimension (LDH,N)
91*> On entry, the upper Hessenberg matrix H.
92*> On exit, if INFO = 0 and WANTT is .TRUE., then H
93*> contains the upper triangular matrix T from the Schur
94*> decomposition (the Schur form). If INFO = 0 and WANT is
95*> .FALSE., then the contents of H are unspecified on exit.
96*> (The output value of H when INFO > 0 is given under the
97*> description of INFO below.)
98*>
99*> This subroutine may explicitly set H(i,j) = 0 for i > j and
100*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
101*> \endverbatim
102*>
103*> \param[in] LDH
104*> \verbatim
105*> LDH is INTEGER
106*> The leading dimension of the array H. LDH >= max(1,N).
107*> \endverbatim
108*>
109*> \param[out] W
110*> \verbatim
111*> W is COMPLEX array, dimension (N)
112*> The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
113*> in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
114*> stored in the same order as on the diagonal of the Schur
115*> form returned in H, with W(i) = H(i,i).
116*> \endverbatim
117*>
118*> \param[in] ILOZ
119*> \verbatim
120*> ILOZ is INTEGER
121*> \endverbatim
122*>
123*> \param[in] IHIZ
124*> \verbatim
125*> IHIZ is INTEGER
126*> Specify the rows of Z to which transformations must be
127*> applied if WANTZ is .TRUE..
128*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
129*> \endverbatim
130*>
131*> \param[in,out] Z
132*> \verbatim
133*> Z is COMPLEX array, dimension (LDZ,IHI)
134*> If WANTZ is .FALSE., then Z is not referenced.
135*> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
136*> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
137*> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
138*> (The output value of Z when INFO > 0 is given under
139*> the description of INFO below.)
140*> \endverbatim
141*>
142*> \param[in] LDZ
143*> \verbatim
144*> LDZ is INTEGER
145*> The leading dimension of the array Z. if WANTZ is .TRUE.
146*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
147*> \endverbatim
148*>
149*> \param[out] WORK
150*> \verbatim
151*> WORK is COMPLEX array, dimension LWORK
152*> On exit, if LWORK = -1, WORK(1) returns an estimate of
153*> the optimal value for LWORK.
154*> \endverbatim
155*>
156*> \param[in] LWORK
157*> \verbatim
158*> LWORK is INTEGER
159*> The dimension of the array WORK. LWORK >= max(1,N)
160*> is sufficient, but LWORK typically as large as 6*N may
161*> be required for optimal performance. A workspace query
162*> to determine the optimal workspace size is recommended.
163*>
164*> If LWORK = -1, then CLAQR0 does a workspace query.
165*> In this case, CLAQR0 checks the input parameters and
166*> estimates the optimal workspace size for the given
167*> values of N, ILO and IHI. The estimate is returned
168*> in WORK(1). No error message related to LWORK is
169*> issued by XERBLA. Neither H nor Z are accessed.
170*> \endverbatim
171*>
172*> \param[out] INFO
173*> \verbatim
174*> INFO is INTEGER
175*> = 0: successful exit
176*> > 0: if INFO = i, CLAQR0 failed to compute all of
177*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
178*> and WI contain those eigenvalues which have been
179*> successfully computed. (Failures are rare.)
180*>
181*> If INFO > 0 and WANT is .FALSE., then on exit,
182*> the remaining unconverged eigenvalues are the eigen-
183*> values of the upper Hessenberg matrix rows and
184*> columns ILO through INFO of the final, output
185*> value of H.
186*>
187*> If INFO > 0 and WANTT is .TRUE., then on exit
188*>
189*> (*) (initial value of H)*U = U*(final value of H)
190*>
191*> where U is a unitary matrix. The final
192*> value of H is upper Hessenberg and triangular in
193*> rows and columns INFO+1 through IHI.
194*>
195*> If INFO > 0 and WANTZ is .TRUE., then on exit
196*>
197*> (final value of Z(ILO:IHI,ILOZ:IHIZ)
198*> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
199*>
200*> where U is the unitary matrix in (*) (regard-
201*> less of the value of WANTT.)
202*>
203*> If INFO > 0 and WANTZ is .FALSE., then Z is not
204*> accessed.
205*> \endverbatim
206*
207* Authors:
208* ========
209*
210*> \author Univ. of Tennessee
211*> \author Univ. of California Berkeley
212*> \author Univ. of Colorado Denver
213*> \author NAG Ltd.
214*
215*> \ingroup laqr0
216*
217*> \par Contributors:
218* ==================
219*>
220*> Karen Braman and Ralph Byers, Department of Mathematics,
221*> University of Kansas, USA
222*
223*> \par References:
224* ================
225*>
226*> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
227*> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
228*> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
229*> 929--947, 2002.
230*> \n
231*> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
232*> Algorithm Part II: Aggressive Early Deflation, SIAM Journal
233*> of Matrix Analysis, volume 23, pages 948--973, 2002.
234*>
235* =====================================================================
236 SUBROUTINE claqr0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
237 $ IHIZ, Z, LDZ, WORK, LWORK, INFO )
238*
239* -- LAPACK auxiliary routine --
240* -- LAPACK is a software package provided by Univ. of Tennessee, --
241* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
242*
243* .. Scalar Arguments ..
244 INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
245 LOGICAL WANTT, WANTZ
246* ..
247* .. Array Arguments ..
248 COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
249* ..
250*
251* ================================================================
252* .. Parameters ..
253*
254* ==== Matrices of order NTINY or smaller must be processed by
255* . CLAHQR because of insufficient subdiagonal scratch space.
256* . (This is a hard limit.) ====
257 INTEGER NTINY
258 parameter( ntiny = 15 )
259*
260* ==== Exceptional deflation windows: try to cure rare
261* . slow convergence by varying the size of the
262* . deflation window after KEXNW iterations. ====
263 INTEGER KEXNW
264 parameter( kexnw = 5 )
265*
266* ==== Exceptional shifts: try to cure rare slow convergence
267* . with ad-hoc exceptional shifts every KEXSH iterations.
268* . ====
269 INTEGER KEXSH
270 parameter( kexsh = 6 )
271*
272* ==== The constant WILK1 is used to form the exceptional
273* . shifts. ====
274 REAL WILK1
275 parameter( wilk1 = 0.75e0 )
276 COMPLEX ZERO, ONE
277 parameter( zero = ( 0.0e0, 0.0e0 ),
278 $ one = ( 1.0e0, 0.0e0 ) )
279 REAL TWO
280 parameter( two = 2.0e0 )
281* ..
282* .. Local Scalars ..
283 COMPLEX AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
284 REAL S
285 INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
286 $ kt, ktop, ku, kv, kwh, kwtop, kwv, ld, ls,
287 $ lwkopt, ndec, ndfl, nh, nho, nibble, nmin, ns,
288 $ nsmax, nsr, nve, nw, nwmax, nwr, nwupbd
289 LOGICAL SORTED
290 CHARACTER JBCMPZ*2
291* ..
292* .. External Functions ..
293 INTEGER ILAENV
294 EXTERNAL ilaenv
295* ..
296* .. Local Arrays ..
297 COMPLEX ZDUM( 1, 1 )
298* ..
299* .. External Subroutines ..
300 EXTERNAL clacpy, clahqr, claqr3, claqr4,
301 $ claqr5
302* ..
303* .. Intrinsic Functions ..
304 INTRINSIC abs, aimag, cmplx, int, max, min, mod, real,
305 $ sqrt
306* ..
307* .. Statement Functions ..
308 REAL CABS1
309* ..
310* .. Statement Function definitions ..
311 cabs1( cdum ) = abs( real( cdum ) ) + abs( aimag( cdum ) )
312* ..
313* .. Executable Statements ..
314 info = 0
315*
316* ==== Quick return for N = 0: nothing to do. ====
317*
318 IF( n.EQ.0 ) THEN
319 work( 1 ) = one
320 RETURN
321 END IF
322*
323 IF( n.LE.ntiny ) THEN
324*
325* ==== Tiny matrices must use CLAHQR. ====
326*
327 lwkopt = 1
328 IF( lwork.NE.-1 )
329 $ CALL clahqr( wantt, wantz, n, ilo, ihi, h, ldh, w, iloz,
330 $ ihiz, z, ldz, info )
331 ELSE
332*
333* ==== Use small bulge multi-shift QR with aggressive early
334* . deflation on larger-than-tiny matrices. ====
335*
336* ==== Hope for the best. ====
337*
338 info = 0
339*
340* ==== Set up job flags for ILAENV. ====
341*
342 IF( wantt ) THEN
343 jbcmpz( 1: 1 ) = 'S'
344 ELSE
345 jbcmpz( 1: 1 ) = 'E'
346 END IF
347 IF( wantz ) THEN
348 jbcmpz( 2: 2 ) = 'V'
349 ELSE
350 jbcmpz( 2: 2 ) = 'N'
351 END IF
352*
353* ==== NWR = recommended deflation window size. At this
354* . point, N .GT. NTINY = 15, so there is enough
355* . subdiagonal workspace for NWR.GE.2 as required.
356* . (In fact, there is enough subdiagonal space for
357* . NWR.GE.4.) ====
358*
359 nwr = ilaenv( 13, 'CLAQR0', jbcmpz, n, ilo, ihi, lwork )
360 nwr = max( 2, nwr )
361 nwr = min( ihi-ilo+1, ( n-1 ) / 3, nwr )
362*
363* ==== NSR = recommended number of simultaneous shifts.
364* . At this point N .GT. NTINY = 15, so there is at
365* . enough subdiagonal workspace for NSR to be even
366* . and greater than or equal to two as required. ====
367*
368 nsr = ilaenv( 15, 'CLAQR0', jbcmpz, n, ilo, ihi, lwork )
369 nsr = min( nsr, ( n-3 ) / 6, ihi-ilo )
370 nsr = max( 2, nsr-mod( nsr, 2 ) )
371*
372* ==== Estimate optimal workspace ====
373*
374* ==== Workspace query call to CLAQR3 ====
375*
376 CALL claqr3( wantt, wantz, n, ilo, ihi, nwr+1, h, ldh, iloz,
377 $ ihiz, z, ldz, ls, ld, w, h, ldh, n, h, ldh, n, h,
378 $ ldh, work, -1 )
379*
380* ==== Optimal workspace = MAX(CLAQR5, CLAQR3) ====
381*
382 lwkopt = max( 3*nsr / 2, int( work( 1 ) ) )
383*
384* ==== Quick return in case of workspace query. ====
385*
386 IF( lwork.EQ.-1 ) THEN
387 work( 1 ) = cmplx( lwkopt, 0 )
388 RETURN
389 END IF
390*
391* ==== CLAHQR/CLAQR0 crossover point ====
392*
393 nmin = ilaenv( 12, 'CLAQR0', jbcmpz, n, ilo, ihi, lwork )
394 nmin = max( ntiny, nmin )
395*
396* ==== Nibble crossover point ====
397*
398 nibble = ilaenv( 14, 'CLAQR0', jbcmpz, n, ilo, ihi, lwork )
399 nibble = max( 0, nibble )
400*
401* ==== Accumulate reflections during ttswp? Use block
402* . 2-by-2 structure during matrix-matrix multiply? ====
403*
404 kacc22 = ilaenv( 16, 'CLAQR0', jbcmpz, n, ilo, ihi, lwork )
405 kacc22 = max( 0, kacc22 )
406 kacc22 = min( 2, kacc22 )
407*
408* ==== NWMAX = the largest possible deflation window for
409* . which there is sufficient workspace. ====
410*
411 nwmax = min( ( n-1 ) / 3, lwork / 2 )
412 nw = nwmax
413*
414* ==== NSMAX = the Largest number of simultaneous shifts
415* . for which there is sufficient workspace. ====
416*
417 nsmax = min( ( n-3 ) / 6, 2*lwork / 3 )
418 nsmax = nsmax - mod( nsmax, 2 )
419*
420* ==== NDFL: an iteration count restarted at deflation. ====
421*
422 ndfl = 1
423*
424* ==== ITMAX = iteration limit ====
425*
426 itmax = max( 30, 2*kexsh )*max( 10, ( ihi-ilo+1 ) )
427*
428* ==== Last row and column in the active block ====
429*
430 kbot = ihi
431*
432* ==== Main Loop ====
433*
434 DO 70 it = 1, itmax
435*
436* ==== Done when KBOT falls below ILO ====
437*
438 IF( kbot.LT.ilo )
439 $ GO TO 80
440*
441* ==== Locate active block ====
442*
443 DO 10 k = kbot, ilo + 1, -1
444 IF( h( k, k-1 ).EQ.zero )
445 $ GO TO 20
446 10 CONTINUE
447 k = ilo
448 20 CONTINUE
449 ktop = k
450*
451* ==== Select deflation window size:
452* . Typical Case:
453* . If possible and advisable, nibble the entire
454* . active block. If not, use size MIN(NWR,NWMAX)
455* . or MIN(NWR+1,NWMAX) depending upon which has
456* . the smaller corresponding subdiagonal entry
457* . (a heuristic).
458* .
459* . Exceptional Case:
460* . If there have been no deflations in KEXNW or
461* . more iterations, then vary the deflation window
462* . size. At first, because, larger windows are,
463* . in general, more powerful than smaller ones,
464* . rapidly increase the window to the maximum possible.
465* . Then, gradually reduce the window size. ====
466*
467 nh = kbot - ktop + 1
468 nwupbd = min( nh, nwmax )
469 IF( ndfl.LT.kexnw ) THEN
470 nw = min( nwupbd, nwr )
471 ELSE
472 nw = min( nwupbd, 2*nw )
473 END IF
474 IF( nw.LT.nwmax ) THEN
475 IF( nw.GE.nh-1 ) THEN
476 nw = nh
477 ELSE
478 kwtop = kbot - nw + 1
479 IF( cabs1( h( kwtop, kwtop-1 ) ).GT.
480 $ cabs1( h( kwtop-1, kwtop-2 ) ) )nw = nw + 1
481 END IF
482 END IF
483 IF( ndfl.LT.kexnw ) THEN
484 ndec = -1
485 ELSE IF( ndec.GE.0 .OR. nw.GE.nwupbd ) THEN
486 ndec = ndec + 1
487 IF( nw-ndec.LT.2 )
488 $ ndec = 0
489 nw = nw - ndec
490 END IF
491*
492* ==== Aggressive early deflation:
493* . split workspace under the subdiagonal into
494* . - an nw-by-nw work array V in the lower
495* . left-hand-corner,
496* . - an NW-by-at-least-NW-but-more-is-better
497* . (NW-by-NHO) horizontal work array along
498* . the bottom edge,
499* . - an at-least-NW-but-more-is-better (NHV-by-NW)
500* . vertical work array along the left-hand-edge.
501* . ====
502*
503 kv = n - nw + 1
504 kt = nw + 1
505 nho = ( n-nw-1 ) - kt + 1
506 kwv = nw + 2
507 nve = ( n-nw ) - kwv + 1
508*
509* ==== Aggressive early deflation ====
510*
511 CALL claqr3( wantt, wantz, n, ktop, kbot, nw, h, ldh,
512 $ iloz,
513 $ ihiz, z, ldz, ls, ld, w, h( kv, 1 ), ldh, nho,
514 $ h( kv, kt ), ldh, nve, h( kwv, 1 ), ldh, work,
515 $ lwork )
516*
517* ==== Adjust KBOT accounting for new deflations. ====
518*
519 kbot = kbot - ld
520*
521* ==== KS points to the shifts. ====
522*
523 ks = kbot - ls + 1
524*
525* ==== Skip an expensive QR sweep if there is a (partly
526* . heuristic) reason to expect that many eigenvalues
527* . will deflate without it. Here, the QR sweep is
528* . skipped if many eigenvalues have just been deflated
529* . or if the remaining active block is small.
530*
531 IF( ( ld.EQ.0 ) .OR. ( ( 100*ld.LE.nw*nibble ) .AND. ( kbot-
532 $ ktop+1.GT.min( nmin, nwmax ) ) ) ) THEN
533*
534* ==== NS = nominal number of simultaneous shifts.
535* . This may be lowered (slightly) if CLAQR3
536* . did not provide that many shifts. ====
537*
538 ns = min( nsmax, nsr, max( 2, kbot-ktop ) )
539 ns = ns - mod( ns, 2 )
540*
541* ==== If there have been no deflations
542* . in a multiple of KEXSH iterations,
543* . then try exceptional shifts.
544* . Otherwise use shifts provided by
545* . CLAQR3 above or from the eigenvalues
546* . of a trailing principal submatrix. ====
547*
548 IF( mod( ndfl, kexsh ).EQ.0 ) THEN
549 ks = kbot - ns + 1
550 DO 30 i = kbot, ks + 1, -2
551 w( i ) = h( i, i ) + wilk1*cabs1( h( i, i-1 ) )
552 w( i-1 ) = w( i )
553 30 CONTINUE
554 ELSE
555*
556* ==== Got NS/2 or fewer shifts? Use CLAQR4 or
557* . CLAHQR on a trailing principal submatrix to
558* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
559* . there is enough space below the subdiagonal
560* . to fit an NS-by-NS scratch array.) ====
561*
562 IF( kbot-ks+1.LE.ns / 2 ) THEN
563 ks = kbot - ns + 1
564 kt = n - ns + 1
565 CALL clacpy( 'A', ns, ns, h( ks, ks ), ldh,
566 $ h( kt, 1 ), ldh )
567 IF( ns.GT.nmin ) THEN
568 CALL claqr4( .false., .false., ns, 1, ns,
569 $ h( kt, 1 ), ldh, w( ks ), 1, 1,
570 $ zdum, 1, work, lwork, inf )
571 ELSE
572 CALL clahqr( .false., .false., ns, 1, ns,
573 $ h( kt, 1 ), ldh, w( ks ), 1, 1,
574 $ zdum, 1, inf )
575 END IF
576 ks = ks + inf
577*
578* ==== In case of a rare QR failure use
579* . eigenvalues of the trailing 2-by-2
580* . principal submatrix. Scale to avoid
581* . overflows, underflows and subnormals.
582* . (The scale factor S can not be zero,
583* . because H(KBOT,KBOT-1) is nonzero.) ====
584*
585 IF( ks.GE.kbot ) THEN
586 s = cabs1( h( kbot-1, kbot-1 ) ) +
587 $ cabs1( h( kbot, kbot-1 ) ) +
588 $ cabs1( h( kbot-1, kbot ) ) +
589 $ cabs1( h( kbot, kbot ) )
590 aa = h( kbot-1, kbot-1 ) / s
591 cc = h( kbot, kbot-1 ) / s
592 bb = h( kbot-1, kbot ) / s
593 dd = h( kbot, kbot ) / s
594 tr2 = ( aa+dd ) / two
595 det = ( aa-tr2 )*( dd-tr2 ) - bb*cc
596 rtdisc = sqrt( -det )
597 w( kbot-1 ) = ( tr2+rtdisc )*s
598 w( kbot ) = ( tr2-rtdisc )*s
599*
600 ks = kbot - 1
601 END IF
602 END IF
603*
604 IF( kbot-ks+1.GT.ns ) THEN
605*
606* ==== Sort the shifts (Helps a little) ====
607*
608 sorted = .false.
609 DO 50 k = kbot, ks + 1, -1
610 IF( sorted )
611 $ GO TO 60
612 sorted = .true.
613 DO 40 i = ks, k - 1
614 IF( cabs1( w( i ) ).LT.cabs1( w( i+1 ) ) )
615 $ THEN
616 sorted = .false.
617 swap = w( i )
618 w( i ) = w( i+1 )
619 w( i+1 ) = swap
620 END IF
621 40 CONTINUE
622 50 CONTINUE
623 60 CONTINUE
624 END IF
625 END IF
626*
627* ==== If there are only two shifts, then use
628* . only one. ====
629*
630 IF( kbot-ks+1.EQ.2 ) THEN
631 IF( cabs1( w( kbot )-h( kbot, kbot ) ).LT.
632 $ cabs1( w( kbot-1 )-h( kbot, kbot ) ) ) THEN
633 w( kbot-1 ) = w( kbot )
634 ELSE
635 w( kbot ) = w( kbot-1 )
636 END IF
637 END IF
638*
639* ==== Use up to NS of the the smallest magnitude
640* . shifts. If there aren't NS shifts available,
641* . then use them all, possibly dropping one to
642* . make the number of shifts even. ====
643*
644 ns = min( ns, kbot-ks+1 )
645 ns = ns - mod( ns, 2 )
646 ks = kbot - ns + 1
647*
648* ==== Small-bulge multi-shift QR sweep:
649* . split workspace under the subdiagonal into
650* . - a KDU-by-KDU work array U in the lower
651* . left-hand-corner,
652* . - a KDU-by-at-least-KDU-but-more-is-better
653* . (KDU-by-NHo) horizontal work array WH along
654* . the bottom edge,
655* . - and an at-least-KDU-but-more-is-better-by-KDU
656* . (NVE-by-KDU) vertical work WV arrow along
657* . the left-hand-edge. ====
658*
659 kdu = 2*ns
660 ku = n - kdu + 1
661 kwh = kdu + 1
662 nho = ( n-kdu+1-4 ) - ( kdu+1 ) + 1
663 kwv = kdu + 4
664 nve = n - kdu - kwv + 1
665*
666* ==== Small-bulge multi-shift QR sweep ====
667*
668 CALL claqr5( wantt, wantz, kacc22, n, ktop, kbot, ns,
669 $ w( ks ), h, ldh, iloz, ihiz, z, ldz, work,
670 $ 3, h( ku, 1 ), ldh, nve, h( kwv, 1 ), ldh,
671 $ nho, h( ku, kwh ), ldh )
672 END IF
673*
674* ==== Note progress (or the lack of it). ====
675*
676 IF( ld.GT.0 ) THEN
677 ndfl = 1
678 ELSE
679 ndfl = ndfl + 1
680 END IF
681*
682* ==== End of main loop ====
683 70 CONTINUE
684*
685* ==== Iteration limit exceeded. Set INFO to show where
686* . the problem occurred and exit. ====
687*
688 info = kbot
689 80 CONTINUE
690 END IF
691*
692* ==== Return the optimal value of LWORK. ====
693*
694 work( 1 ) = cmplx( lwkopt, 0 )
695*
696* ==== End of CLAQR0 ====
697*
698 END
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
subroutine clahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition clahqr.f:193
subroutine claqr0(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork, info)
CLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition claqr0.f:238
subroutine claqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
CLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fu...
Definition claqr3.f:265
subroutine claqr4(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork, info)
CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition claqr4.f:246
subroutine claqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, s, h, ldh, iloz, ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)
CLAQR5 performs a single small-bulge multi-shift QR sweep.
Definition claqr5.f:256