LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
chseqr.f
Go to the documentation of this file.
1*> \brief \b CHSEQR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CHSEQR + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chseqr.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chseqr.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chseqr.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
20* WORK, LWORK, INFO )
21*
22* .. Scalar Arguments ..
23* INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
24* CHARACTER COMPZ, JOB
25* ..
26* .. Array Arguments ..
27* COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CHSEQR computes the eigenvalues of a Hessenberg matrix H
37*> and, optionally, the matrices T and Z from the Schur decomposition
38*> H = Z T Z**H, where T is an upper triangular matrix (the
39*> Schur form), and Z is the unitary matrix of Schur vectors.
40*>
41*> Optionally Z may be postmultiplied into an input unitary
42*> matrix Q so that this routine can give the Schur factorization
43*> of a matrix A which has been reduced to the Hessenberg form H
44*> by the unitary matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H.
45*> \endverbatim
46*
47* Arguments:
48* ==========
49*
50*> \param[in] JOB
51*> \verbatim
52*> JOB is CHARACTER*1
53*> = 'E': compute eigenvalues only;
54*> = 'S': compute eigenvalues and the Schur form T.
55*> \endverbatim
56*>
57*> \param[in] COMPZ
58*> \verbatim
59*> COMPZ is CHARACTER*1
60*> = 'N': no Schur vectors are computed;
61*> = 'I': Z is initialized to the unit matrix and the matrix Z
62*> of Schur vectors of H is returned;
63*> = 'V': Z must contain an unitary matrix Q on entry, and
64*> the product Q*Z is returned.
65*> \endverbatim
66*>
67*> \param[in] N
68*> \verbatim
69*> N is INTEGER
70*> The order of the matrix H. N >= 0.
71*> \endverbatim
72*>
73*> \param[in] ILO
74*> \verbatim
75*> ILO is INTEGER
76*> \endverbatim
77*>
78*> \param[in] IHI
79*> \verbatim
80*> IHI is INTEGER
81*>
82*> It is assumed that H is already upper triangular in rows
83*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
84*> set by a previous call to CGEBAL, and then passed to ZGEHRD
85*> when the matrix output by CGEBAL is reduced to Hessenberg
86*> form. Otherwise ILO and IHI should be set to 1 and N
87*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
88*> If N = 0, then ILO = 1 and IHI = 0.
89*> \endverbatim
90*>
91*> \param[in,out] H
92*> \verbatim
93*> H is COMPLEX array, dimension (LDH,N)
94*> On entry, the upper Hessenberg matrix H.
95*> On exit, if INFO = 0 and JOB = 'S', H contains the upper
96*> triangular matrix T from the Schur decomposition (the
97*> Schur form). If INFO = 0 and JOB = 'E', the contents of
98*> H are unspecified on exit. (The output value of H when
99*> INFO > 0 is given under the description of INFO below.)
100*>
101*> Unlike earlier versions of CHSEQR, this subroutine may
102*> explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
103*> or j = IHI+1, IHI+2, ... N.
104*> \endverbatim
105*>
106*> \param[in] LDH
107*> \verbatim
108*> LDH is INTEGER
109*> The leading dimension of the array H. LDH >= max(1,N).
110*> \endverbatim
111*>
112*> \param[out] W
113*> \verbatim
114*> W is COMPLEX array, dimension (N)
115*> The computed eigenvalues. If JOB = 'S', the eigenvalues are
116*> stored in the same order as on the diagonal of the Schur
117*> form returned in H, with W(i) = H(i,i).
118*> \endverbatim
119*>
120*> \param[in,out] Z
121*> \verbatim
122*> Z is COMPLEX array, dimension (LDZ,N)
123*> If COMPZ = 'N', Z is not referenced.
124*> If COMPZ = 'I', on entry Z need not be set and on exit,
125*> if INFO = 0, Z contains the unitary matrix Z of the Schur
126*> vectors of H. If COMPZ = 'V', on entry Z must contain an
127*> N-by-N matrix Q, which is assumed to be equal to the unit
128*> matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
129*> if INFO = 0, Z contains Q*Z.
130*> Normally Q is the unitary matrix generated by CUNGHR
131*> after the call to CGEHRD which formed the Hessenberg matrix
132*> H. (The output value of Z when INFO > 0 is given under
133*> the description of INFO below.)
134*> \endverbatim
135*>
136*> \param[in] LDZ
137*> \verbatim
138*> LDZ is INTEGER
139*> The leading dimension of the array Z. if COMPZ = 'I' or
140*> COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1.
141*> \endverbatim
142*>
143*> \param[out] WORK
144*> \verbatim
145*> WORK is COMPLEX array, dimension (LWORK)
146*> On exit, if INFO = 0, WORK(1) returns an estimate of
147*> the optimal value for LWORK.
148*> \endverbatim
149*>
150*> \param[in] LWORK
151*> \verbatim
152*> LWORK is INTEGER
153*> The dimension of the array WORK. LWORK >= max(1,N)
154*> is sufficient and delivers very good and sometimes
155*> optimal performance. However, LWORK as large as 11*N
156*> may be required for optimal performance. A workspace
157*> query is recommended to determine the optimal workspace
158*> size.
159*>
160*> If LWORK = -1, then CHSEQR does a workspace query.
161*> In this case, CHSEQR checks the input parameters and
162*> estimates the optimal workspace size for the given
163*> values of N, ILO and IHI. The estimate is returned
164*> in WORK(1). No error message related to LWORK is
165*> issued by XERBLA. Neither H nor Z are accessed.
166*> \endverbatim
167*>
168*> \param[out] INFO
169*> \verbatim
170*> INFO is INTEGER
171*> = 0: successful exit
172*> < 0: if INFO = -i, the i-th argument had an illegal
173*> value
174*> > 0: if INFO = i, CHSEQR failed to compute all of
175*> the eigenvalues. Elements 1:ilo-1 and i+1:n of W
176*> contain those eigenvalues which have been
177*> successfully computed. (Failures are rare.)
178*>
179*> If INFO > 0 and JOB = 'E', then on exit, the
180*> remaining unconverged eigenvalues are the eigen-
181*> values of the upper Hessenberg matrix rows and
182*> columns ILO through INFO of the final, output
183*> value of H.
184*>
185*> If INFO > 0 and JOB = 'S', then on exit
186*>
187*> (*) (initial value of H)*U = U*(final value of H)
188*>
189*> where U is a unitary matrix. The final
190*> value of H is upper Hessenberg and triangular in
191*> rows and columns INFO+1 through IHI.
192*>
193*> If INFO > 0 and COMPZ = 'V', then on exit
194*>
195*> (final value of Z) = (initial value of Z)*U
196*>
197*> where U is the unitary matrix in (*) (regard-
198*> less of the value of JOB.)
199*>
200*> If INFO > 0 and COMPZ = 'I', then on exit
201*> (final value of Z) = U
202*> where U is the unitary matrix in (*) (regard-
203*> less of the value of JOB.)
204*>
205*> If INFO > 0 and COMPZ = 'N', then Z is not
206*> accessed.
207*> \endverbatim
208*
209* Authors:
210* ========
211*
212*> \author Univ. of Tennessee
213*> \author Univ. of California Berkeley
214*> \author Univ. of Colorado Denver
215*> \author NAG Ltd.
216*
217*> \ingroup hseqr
218*
219*> \par Contributors:
220* ==================
221*>
222*> Karen Braman and Ralph Byers, Department of Mathematics,
223*> University of Kansas, USA
224*
225*> \par Further Details:
226* =====================
227*>
228*> \verbatim
229*>
230*> Default values supplied by
231*> ILAENV(ISPEC,'CHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
232*> It is suggested that these defaults be adjusted in order
233*> to attain best performance in each particular
234*> computational environment.
235*>
236*> ISPEC=12: The CLAHQR vs CLAQR0 crossover point.
237*> Default: 75. (Must be at least 11.)
238*>
239*> ISPEC=13: Recommended deflation window size.
240*> This depends on ILO, IHI and NS. NS is the
241*> number of simultaneous shifts returned
242*> by ILAENV(ISPEC=15). (See ISPEC=15 below.)
243*> The default for (IHI-ILO+1) <= 500 is NS.
244*> The default for (IHI-ILO+1) > 500 is 3*NS/2.
245*>
246*> ISPEC=14: Nibble crossover point. (See IPARMQ for
247*> details.) Default: 14% of deflation window
248*> size.
249*>
250*> ISPEC=15: Number of simultaneous shifts in a multishift
251*> QR iteration.
252*>
253*> If IHI-ILO+1 is ...
254*>
255*> greater than ...but less ... the
256*> or equal to ... than default is
257*>
258*> 1 30 NS = 2(+)
259*> 30 60 NS = 4(+)
260*> 60 150 NS = 10(+)
261*> 150 590 NS = **
262*> 590 3000 NS = 64
263*> 3000 6000 NS = 128
264*> 6000 infinity NS = 256
265*>
266*> (+) By default some or all matrices of this order
267*> are passed to the implicit double shift routine
268*> CLAHQR and this parameter is ignored. See
269*> ISPEC=12 above and comments in IPARMQ for
270*> details.
271*>
272*> (**) The asterisks (**) indicate an ad-hoc
273*> function of N increasing from 10 to 64.
274*>
275*> ISPEC=16: Select structured matrix multiply.
276*> If the number of simultaneous shifts (specified
277*> by ISPEC=15) is less than 14, then the default
278*> for ISPEC=16 is 0. Otherwise the default for
279*> ISPEC=16 is 2.
280*> \endverbatim
281*
282*> \par References:
283* ================
284*>
285*> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
286*> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
287*> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
288*> 929--947, 2002.
289*> \n
290*> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
291*> Algorithm Part II: Aggressive Early Deflation, SIAM Journal
292*> of Matrix Analysis, volume 23, pages 948--973, 2002.
293*
294* =====================================================================
295 SUBROUTINE chseqr( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
296 $ WORK, LWORK, INFO )
297*
298* -- LAPACK computational routine --
299* -- LAPACK is a software package provided by Univ. of Tennessee, --
300* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
301*
302* .. Scalar Arguments ..
303 INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
304 CHARACTER COMPZ, JOB
305* ..
306* .. Array Arguments ..
307 COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
308* ..
309*
310* =====================================================================
311*
312* .. Parameters ..
313*
314* ==== Matrices of order NTINY or smaller must be processed by
315* . CLAHQR because of insufficient subdiagonal scratch space.
316* . (This is a hard limit.) ====
317 INTEGER NTINY
318 parameter( ntiny = 15 )
319*
320* ==== NL allocates some local workspace to help small matrices
321* . through a rare CLAHQR failure. NL > NTINY = 15 is
322* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
323* . mended. (The default value of NMIN is 75.) Using NL = 49
324* . allows up to six simultaneous shifts and a 16-by-16
325* . deflation window. ====
326 INTEGER NL
327 parameter( nl = 49 )
328 COMPLEX ZERO, ONE
329 parameter( zero = ( 0.0e0, 0.0e0 ),
330 $ one = ( 1.0e0, 0.0e0 ) )
331 REAL RZERO
332 parameter( rzero = 0.0e0 )
333* ..
334* .. Local Arrays ..
335 COMPLEX HL( NL, NL ), WORKL( NL )
336* ..
337* .. Local Scalars ..
338 INTEGER KBOT, NMIN
339 LOGICAL INITZ, LQUERY, WANTT, WANTZ
340* ..
341* .. External Functions ..
342 INTEGER ILAENV
343 LOGICAL LSAME
344 REAL SROUNDUP_LWORK
345 EXTERNAL ilaenv, lsame, sroundup_lwork
346* ..
347* .. External Subroutines ..
348 EXTERNAL ccopy, clacpy, clahqr, claqr0, claset,
349 $ xerbla
350* ..
351* .. Intrinsic Functions ..
352 INTRINSIC cmplx, max, min, real
353* ..
354* .. Executable Statements ..
355*
356* ==== Decode and check the input parameters. ====
357*
358 wantt = lsame( job, 'S' )
359 initz = lsame( compz, 'I' )
360 wantz = initz .OR. lsame( compz, 'V' )
361 work( 1 ) = cmplx( real( max( 1, n ) ), rzero )
362 lquery = lwork.EQ.-1
363*
364 info = 0
365 IF( .NOT.lsame( job, 'E' ) .AND. .NOT.wantt ) THEN
366 info = -1
367 ELSE IF( .NOT.lsame( compz, 'N' ) .AND. .NOT.wantz ) THEN
368 info = -2
369 ELSE IF( n.LT.0 ) THEN
370 info = -3
371 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
372 info = -4
373 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
374 info = -5
375 ELSE IF( ldh.LT.max( 1, n ) ) THEN
376 info = -7
377 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.max( 1, n ) ) ) THEN
378 info = -10
379 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
380 info = -12
381 END IF
382*
383 IF( info.NE.0 ) THEN
384*
385* ==== Quick return in case of invalid argument. ====
386*
387 CALL xerbla( 'CHSEQR', -info )
388 RETURN
389*
390 ELSE IF( n.EQ.0 ) THEN
391*
392* ==== Quick return in case N = 0; nothing to do. ====
393*
394 RETURN
395*
396 ELSE IF( lquery ) THEN
397*
398* ==== Quick return in case of a workspace query ====
399*
400 CALL claqr0( wantt, wantz, n, ilo, ihi, h, ldh, w, ilo, ihi,
401 $ z,
402 $ ldz, work, lwork, info )
403* ==== Ensure reported workspace size is backward-compatible with
404* . previous LAPACK versions. ====
405 work( 1 ) = cmplx( max( real( work( 1 ) ), real( max( 1,
406 $ n ) ) ), rzero )
407 RETURN
408*
409 ELSE
410*
411* ==== copy eigenvalues isolated by CGEBAL ====
412*
413 IF( ilo.GT.1 )
414 $ CALL ccopy( ilo-1, h, ldh+1, w, 1 )
415 IF( ihi.LT.n )
416 $ CALL ccopy( n-ihi, h( ihi+1, ihi+1 ), ldh+1, w( ihi+1 ),
417 $ 1 )
418*
419* ==== Initialize Z, if requested ====
420*
421 IF( initz )
422 $ CALL claset( 'A', n, n, zero, one, z, ldz )
423*
424* ==== Quick return if possible ====
425*
426 IF( ilo.EQ.ihi ) THEN
427 w( ilo ) = h( ilo, ilo )
428 RETURN
429 END IF
430*
431* ==== CLAHQR/CLAQR0 crossover point ====
432*
433 nmin = ilaenv( 12, 'CHSEQR', job( : 1 ) // compz( : 1 ), n,
434 $ ilo, ihi, lwork )
435 nmin = max( ntiny, nmin )
436*
437* ==== CLAQR0 for big matrices; CLAHQR for small ones ====
438*
439 IF( n.GT.nmin ) THEN
440 CALL claqr0( wantt, wantz, n, ilo, ihi, h, ldh, w, ilo,
441 $ ihi,
442 $ z, ldz, work, lwork, info )
443 ELSE
444*
445* ==== Small matrix ====
446*
447 CALL clahqr( wantt, wantz, n, ilo, ihi, h, ldh, w, ilo,
448 $ ihi,
449 $ z, ldz, info )
450*
451 IF( info.GT.0 ) THEN
452*
453* ==== A rare CLAHQR failure! CLAQR0 sometimes succeeds
454* . when CLAHQR fails. ====
455*
456 kbot = info
457*
458 IF( n.GE.nl ) THEN
459*
460* ==== Larger matrices have enough subdiagonal scratch
461* . space to call CLAQR0 directly. ====
462*
463 CALL claqr0( wantt, wantz, n, ilo, kbot, h, ldh, w,
464 $ ilo, ihi, z, ldz, work, lwork, info )
465*
466 ELSE
467*
468* ==== Tiny matrices don't have enough subdiagonal
469* . scratch space to benefit from CLAQR0. Hence,
470* . tiny matrices must be copied into a larger
471* . array before calling CLAQR0. ====
472*
473 CALL clacpy( 'A', n, n, h, ldh, hl, nl )
474 hl( n+1, n ) = zero
475 CALL claset( 'A', nl, nl-n, zero, zero, hl( 1,
476 $ n+1 ),
477 $ nl )
478 CALL claqr0( wantt, wantz, nl, ilo, kbot, hl, nl,
479 $ w,
480 $ ilo, ihi, z, ldz, workl, nl, info )
481 IF( wantt .OR. info.NE.0 )
482 $ CALL clacpy( 'A', n, n, hl, nl, h, ldh )
483 END IF
484 END IF
485 END IF
486*
487* ==== Clear out the trash, if necessary. ====
488*
489 IF( ( wantt .OR. info.NE.0 ) .AND. n.GT.2 )
490 $ CALL claset( 'L', n-2, n-2, zero, zero, h( 3, 1 ), ldh )
491*
492* ==== Ensure reported workspace size is backward-compatible with
493* . previous LAPACK versions. ====
494*
495 work( 1 ) = cmplx( max( real( max( 1, n ) ),
496 $ real( work( 1 ) ) ), rzero )
497 END IF
498*
499* ==== End of CHSEQR ====
500*
501 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine chseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)
CHSEQR
Definition chseqr.f:297
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
subroutine clahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition clahqr.f:193
subroutine claqr0(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork, info)
CLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition claqr0.f:238
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:104