LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dget01()

subroutine dget01 ( integer m,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( ldafac, * ) afac,
integer ldafac,
integer, dimension( * ) ipiv,
double precision, dimension( * ) rwork,
double precision resid )

DGET01

Purpose:
!>
!> DGET01 reconstructs a matrix A from its L*U factorization and
!> computes the residual
!>    norm(L*U - A) / ( N * norm(A) * EPS ),
!> where EPS is the machine epsilon.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The original M x N matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[in,out]AFAC
!>          AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
!>          The factored form of the matrix A.  AFAC contains the factors
!>          L and U from the L*U factorization as computed by DGETRF.
!>          Overwritten with the reconstructed matrix, and then with the
!>          difference L*U - A.
!> 
[in]LDAFAC
!>          LDAFAC is INTEGER
!>          The leading dimension of the array AFAC.  LDAFAC >= max(1,M).
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          The pivot indices from DGETRF.
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (M)
!> 
[out]RESID
!>          RESID is DOUBLE PRECISION
!>          norm(L*U - A) / ( N * norm(A) * EPS )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 105 of file dget01.f.

107*
108* -- LAPACK test routine --
109* -- LAPACK is a software package provided by Univ. of Tennessee, --
110* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
111*
112* .. Scalar Arguments ..
113 INTEGER LDA, LDAFAC, M, N
114 DOUBLE PRECISION RESID
115* ..
116* .. Array Arguments ..
117 INTEGER IPIV( * )
118 DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
119* ..
120*
121* =====================================================================
122*
123*
124* .. Parameters ..
125 DOUBLE PRECISION ZERO, ONE
126 parameter( zero = 0.0d+0, one = 1.0d+0 )
127* ..
128* .. Local Scalars ..
129 INTEGER I, J, K
130 DOUBLE PRECISION ANORM, EPS, T
131* ..
132* .. External Functions ..
133 DOUBLE PRECISION DDOT, DLAMCH, DLANGE
134 EXTERNAL ddot, dlamch, dlange
135* ..
136* .. External Subroutines ..
137 EXTERNAL dgemv, dlaswp, dscal, dtrmv
138* ..
139* .. Intrinsic Functions ..
140 INTRINSIC dble, min
141* ..
142* .. Executable Statements ..
143*
144* Quick exit if M = 0 or N = 0.
145*
146 IF( m.LE.0 .OR. n.LE.0 ) THEN
147 resid = zero
148 RETURN
149 END IF
150*
151* Determine EPS and the norm of A.
152*
153 eps = dlamch( 'Epsilon' )
154 anorm = dlange( '1', m, n, a, lda, rwork )
155*
156* Compute the product L*U and overwrite AFAC with the result.
157* A column at a time of the product is obtained, starting with
158* column N.
159*
160 DO 10 k = n, 1, -1
161 IF( k.GT.m ) THEN
162 CALL dtrmv( 'Lower', 'No transpose', 'Unit', m, afac,
163 $ ldafac, afac( 1, k ), 1 )
164 ELSE
165*
166* Compute elements (K+1:M,K)
167*
168 t = afac( k, k )
169 IF( k+1.LE.m ) THEN
170 CALL dscal( m-k, t, afac( k+1, k ), 1 )
171 CALL dgemv( 'No transpose', m-k, k-1, one,
172 $ afac( k+1, 1 ), ldafac, afac( 1, k ), 1, one,
173 $ afac( k+1, k ), 1 )
174 END IF
175*
176* Compute the (K,K) element
177*
178 afac( k, k ) = t + ddot( k-1, afac( k, 1 ), ldafac,
179 $ afac( 1, k ), 1 )
180*
181* Compute elements (1:K-1,K)
182*
183 CALL dtrmv( 'Lower', 'No transpose', 'Unit', k-1, afac,
184 $ ldafac, afac( 1, k ), 1 )
185 END IF
186 10 CONTINUE
187 CALL dlaswp( n, afac, ldafac, 1, min( m, n ), ipiv, -1 )
188*
189* Compute the difference L*U - A and store in AFAC.
190*
191 DO 30 j = 1, n
192 DO 20 i = 1, m
193 afac( i, j ) = afac( i, j ) - a( i, j )
194 20 CONTINUE
195 30 CONTINUE
196*
197* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
198*
199 resid = dlange( '1', m, n, afac, ldafac, rwork )
200*
201 IF( anorm.LE.zero ) THEN
202 IF( resid.NE.zero )
203 $ resid = one / eps
204 ELSE
205 resid = ( ( resid / dble( n ) ) / anorm ) / eps
206 END IF
207*
208 RETURN
209*
210* End of DGET01
211*
double precision function ddot(n, dx, incx, dy, incy)
DDOT
Definition ddot.f:82
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
Definition dgemv.f:158
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:112
subroutine dlaswp(n, a, lda, k1, k2, ipiv, incx)
DLASWP performs a series of row interchanges on a general rectangular matrix.
Definition dlaswp.f:113
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dtrmv(uplo, trans, diag, n, a, lda, x, incx)
DTRMV
Definition dtrmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: