LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlaswlq()

subroutine dlaswlq ( integer  m,
integer  n,
integer  mb,
integer  nb,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldt, *)  t,
integer  ldt,
double precision, dimension( * )  work,
integer  lwork,
integer  info 
)

DLASWLQ

Purpose:
 DLASWLQ computes a blocked Tall-Skinny LQ factorization of
 a real M-by-N matrix A for M <= N:

    A = ( L 0 ) *  Q,

 where:

    Q is a n-by-N orthogonal matrix, stored on exit in an implicit
    form in the elements above the diagonal of the array A and in
    the elements of the array T;
    L is a lower-triangular M-by-M matrix stored on exit in
    the elements on and below the diagonal of the array A.
    0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M >= 0.
[in]MB
          MB is INTEGER
          The row block size to be used in the blocked QR.
          M >= MB >= 1
[in]NB
          NB is INTEGER
          The column block size to be used in the blocked QR.
          NB > 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and below the diagonal
          of the array contain the N-by-N lower triangular matrix L;
          the elements above the diagonal represent Q by the rows
          of blocked V (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is DOUBLE PRECISION array,
          dimension (LDT, N * Number_of_row_blocks)
          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
          The blocked upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.
          See Further Details below.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= MB.
[out]WORK
         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= MB*M.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
 Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
 representing Q as a product of other orthogonal matrices
   Q = Q(1) * Q(2) * . . . * Q(k)
 where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
   . . .

 Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
 stored under the diagonal of rows 1:MB of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,1:N).
 For more information see Further Details in GELQT.

 Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
 stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
 The last Q(k) may use fewer rows.
 For more information see Further Details in TPQRT.

 For more details of the overall algorithm, see the description of
 Sequential TSQR in Section 2.2 of [1].

 [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
     SIAM J. Sci. Comput, vol. 34, no. 1, 2012

Definition at line 165 of file dlaswlq.f.

167*
168* -- LAPACK computational routine --
169* -- LAPACK is a software package provided by Univ. of Tennessee, --
170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
171*
172* .. Scalar Arguments ..
173 INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
174* ..
175* .. Array Arguments ..
176 DOUBLE PRECISION A( LDA, * ), WORK( * ), T( LDT, *)
177* ..
178*
179* =====================================================================
180*
181* ..
182* .. Local Scalars ..
183 LOGICAL LQUERY
184 INTEGER I, II, KK, CTR
185* ..
186* .. EXTERNAL FUNCTIONS ..
187 LOGICAL LSAME
188 EXTERNAL lsame
189* .. EXTERNAL SUBROUTINES ..
190 EXTERNAL dgelqt, dtplqt, xerbla
191* .. INTRINSIC FUNCTIONS ..
192 INTRINSIC max, min, mod
193* ..
194* .. EXECUTABLE STATEMENTS ..
195*
196* TEST THE INPUT ARGUMENTS
197*
198 info = 0
199*
200 lquery = ( lwork.EQ.-1 )
201*
202 IF( m.LT.0 ) THEN
203 info = -1
204 ELSE IF( n.LT.0 .OR. n.LT.m ) THEN
205 info = -2
206 ELSE IF( mb.LT.1 .OR. ( mb.GT.m .AND. m.GT.0 )) THEN
207 info = -3
208 ELSE IF( nb.LT.0 ) THEN
209 info = -4
210 ELSE IF( lda.LT.max( 1, m ) ) THEN
211 info = -6
212 ELSE IF( ldt.LT.mb ) THEN
213 info = -8
214 ELSE IF( ( lwork.LT.m*mb) .AND. (.NOT.lquery) ) THEN
215 info = -10
216 END IF
217 IF( info.EQ.0) THEN
218 work(1) = mb*m
219 END IF
220*
221 IF( info.NE.0 ) THEN
222 CALL xerbla( 'DLASWLQ', -info )
223 RETURN
224 ELSE IF (lquery) THEN
225 RETURN
226 END IF
227*
228* Quick return if possible
229*
230 IF( min(m,n).EQ.0 ) THEN
231 RETURN
232 END IF
233*
234* The LQ Decomposition
235*
236 IF((m.GE.n).OR.(nb.LE.m).OR.(nb.GE.n)) THEN
237 CALL dgelqt( m, n, mb, a, lda, t, ldt, work, info)
238 RETURN
239 END IF
240*
241 kk = mod((n-m),(nb-m))
242 ii=n-kk+1
243*
244* Compute the LQ factorization of the first block A(1:M,1:NB)
245*
246 CALL dgelqt( m, nb, mb, a(1,1), lda, t, ldt, work, info)
247 ctr = 1
248*
249 DO i = nb+1, ii-nb+m , (nb-m)
250*
251* Compute the QR factorization of the current block A(1:M,I:I+NB-M)
252*
253 CALL dtplqt( m, nb-m, 0, mb, a(1,1), lda, a( 1, i ),
254 $ lda, t(1, ctr * m + 1),
255 $ ldt, work, info )
256 ctr = ctr + 1
257 END DO
258*
259* Compute the QR factorization of the last block A(1:M,II:N)
260*
261 IF (ii.LE.n) THEN
262 CALL dtplqt( m, kk, 0, mb, a(1,1), lda, a( 1, ii ),
263 $ lda, t(1, ctr * m + 1), ldt,
264 $ work, info )
265 END IF
266*
267 work( 1 ) = m * mb
268 RETURN
269*
270* End of DLASWLQ
271*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgelqt(m, n, mb, a, lda, t, ldt, work, info)
DGELQT
Definition dgelqt.f:139
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
DTPLQT
Definition dtplqt.f:189
Here is the call graph for this function:
Here is the caller graph for this function: