LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dlaswlq.f
Go to the documentation of this file.
1*> \brief \b DLASWLQ
2*
3* Definition:
4* ===========
5*
6* SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
7* LWORK, INFO)
8*
9* .. Scalar Arguments ..
10* INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
11* ..
12* .. Array Arguments ..
13* DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
14* ..
15*
16*
17*> \par Purpose:
18* =============
19*>
20*> \verbatim
21*>
22*> DLASWLQ computes a blocked Tall-Skinny LQ factorization of
23*> a real M-by-N matrix A for M <= N:
24*>
25*> A = ( L 0 ) * Q,
26*>
27*> where:
28*>
29*> Q is a n-by-N orthogonal matrix, stored on exit in an implicit
30*> form in the elements above the diagonal of the array A and in
31*> the elements of the array T;
32*> L is a lower-triangular M-by-M matrix stored on exit in
33*> the elements on and below the diagonal of the array A.
34*> 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
35*>
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] M
42*> \verbatim
43*> M is INTEGER
44*> The number of rows of the matrix A. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of columns of the matrix A. N >= M >= 0.
51*> \endverbatim
52*>
53*> \param[in] MB
54*> \verbatim
55*> MB is INTEGER
56*> The row block size to be used in the blocked QR.
57*> M >= MB >= 1
58*> \endverbatim
59*> \param[in] NB
60*> \verbatim
61*> NB is INTEGER
62*> The column block size to be used in the blocked QR.
63*> NB > 0.
64*> \endverbatim
65*>
66*> \param[in,out] A
67*> \verbatim
68*> A is DOUBLE PRECISION array, dimension (LDA,N)
69*> On entry, the M-by-N matrix A.
70*> On exit, the elements on and below the diagonal
71*> of the array contain the N-by-N lower triangular matrix L;
72*> the elements above the diagonal represent Q by the rows
73*> of blocked V (see Further Details).
74*>
75*> \endverbatim
76*>
77*> \param[in] LDA
78*> \verbatim
79*> LDA is INTEGER
80*> The leading dimension of the array A. LDA >= max(1,M).
81*> \endverbatim
82*>
83*> \param[out] T
84*> \verbatim
85*> T is DOUBLE PRECISION array,
86*> dimension (LDT, N * Number_of_row_blocks)
87*> where Number_of_row_blocks = CEIL((N-M)/(NB-M))
88*> The blocked upper triangular block reflectors stored in compact form
89*> as a sequence of upper triangular blocks.
90*> See Further Details below.
91*> \endverbatim
92*>
93*> \param[in] LDT
94*> \verbatim
95*> LDT is INTEGER
96*> The leading dimension of the array T. LDT >= MB.
97*> \endverbatim
98*>
99*>
100*> \param[out] WORK
101*> \verbatim
102*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
103*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
104*> \endverbatim
105*>
106*> \param[in] LWORK
107*> \verbatim
108*> LWORK is INTEGER
109*> The dimension of the array WORK.
110*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise.
111*>
112*> If LWORK = -1, then a workspace query is assumed; the routine
113*> only calculates the minimal size of the WORK array, returns
114*> this value as the first entry of the WORK array, and no error
115*> message related to LWORK is issued by XERBLA.
116*> \endverbatim
117*>
118*> \param[out] INFO
119*> \verbatim
120*> INFO is INTEGER
121*> = 0: successful exit
122*> < 0: if INFO = -i, the i-th argument had an illegal value
123*> \endverbatim
124*
125* Authors:
126* ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \par Further Details:
134* =====================
135*>
136*> \verbatim
137*> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
138*> representing Q as a product of other orthogonal matrices
139*> Q = Q(1) * Q(2) * . . . * Q(k)
140*> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
141*> Q(1) zeros out the upper diagonal entries of rows 1:NB of A
142*> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
143*> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
144*> . . .
145*>
146*> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
147*> stored under the diagonal of rows 1:MB of A, and by upper triangular
148*> block reflectors, stored in array T(1:LDT,1:N).
149*> For more information see Further Details in GELQT.
150*>
151*> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
152*> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
153*> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
154*> The last Q(k) may use fewer rows.
155*> For more information see Further Details in TPQRT.
156*>
157*> For more details of the overall algorithm, see the description of
158*> Sequential TSQR in Section 2.2 of [1].
159*>
160*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
161*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
162*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
163*> \endverbatim
164*>
165*> \ingroup laswlq
166*>
167* =====================================================================
168 SUBROUTINE dlaswlq( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
169 $ INFO )
170*
171* -- LAPACK computational routine --
172* -- LAPACK is a software package provided by Univ. of Tennessee, --
173* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
174*
175* .. Scalar Arguments ..
176 INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
177* ..
178* .. Array Arguments ..
179 DOUBLE PRECISION A( LDA, * ), WORK( * ), T( LDT, * )
180* ..
181*
182* =====================================================================
183*
184* ..
185* .. Local Scalars ..
186 LOGICAL LQUERY
187 INTEGER I, II, KK, CTR, MINMN, LWMIN
188* ..
189* .. EXTERNAL FUNCTIONS ..
190 LOGICAL LSAME
191 EXTERNAL lsame
192* ..
193* .. EXTERNAL SUBROUTINES ..
194 EXTERNAL dgelqt, dtplqt, xerbla
195* ..
196* .. INTRINSIC FUNCTIONS ..
197 INTRINSIC max, min, mod
198* ..
199* .. EXECUTABLE STATEMENTS ..
200*
201* TEST THE INPUT ARGUMENTS
202*
203 info = 0
204*
205 lquery = ( lwork.EQ.-1 )
206*
207 minmn = min( m, n )
208 IF( minmn.EQ.0 ) THEN
209 lwmin = 1
210 ELSE
211 lwmin = m*mb
212 END IF
213*
214 IF( m.LT.0 ) THEN
215 info = -1
216 ELSE IF( n.LT.0 .OR. n.LT.m ) THEN
217 info = -2
218 ELSE IF( mb.LT.1 .OR. ( mb.GT.m .AND. m.GT.0 ) ) THEN
219 info = -3
220 ELSE IF( nb.LT.0 ) THEN
221 info = -4
222 ELSE IF( lda.LT.max( 1, m ) ) THEN
223 info = -6
224 ELSE IF( ldt.LT.mb ) THEN
225 info = -8
226 ELSE IF( lwork.LT.lwmin .AND. (.NOT.lquery) ) THEN
227 info = -10
228 END IF
229*
230 IF( info.EQ.0 ) THEN
231 work( 1 ) = lwmin
232 END IF
233*
234 IF( info.NE.0 ) THEN
235 CALL xerbla( 'DLASWLQ', -info )
236 RETURN
237 ELSE IF( lquery ) THEN
238 RETURN
239 END IF
240*
241* Quick return if possible
242*
243 IF( minmn.EQ.0 ) THEN
244 RETURN
245 END IF
246*
247* The LQ Decomposition
248*
249 IF( (m.GE.n) .OR. (nb.LE.m) .OR. (nb.GE.n) ) THEN
250 CALL dgelqt( m, n, mb, a, lda, t, ldt, work, info )
251 RETURN
252 END IF
253*
254 kk = mod((n-m),(nb-m))
255 ii = n-kk+1
256*
257* Compute the LQ factorization of the first block A(1:M,1:NB)
258*
259 CALL dgelqt( m, nb, mb, a(1,1), lda, t, ldt, work, info )
260 ctr = 1
261*
262 DO i = nb+1, ii-nb+m, (nb-m)
263*
264* Compute the QR factorization of the current block A(1:M,I:I+NB-M)
265*
266 CALL dtplqt( m, nb-m, 0, mb, a(1,1), lda, a( 1, i ),
267 $ lda, t(1, ctr * m + 1),
268 $ ldt, work, info )
269 ctr = ctr + 1
270 END DO
271*
272* Compute the QR factorization of the last block A(1:M,II:N)
273*
274 IF( ii.LE.n ) THEN
275 CALL dtplqt( m, kk, 0, mb, a(1,1), lda, a( 1, ii ),
276 $ lda, t(1, ctr * m + 1), ldt,
277 $ work, info )
278 END IF
279*
280 work( 1 ) = lwmin
281*
282 RETURN
283*
284* End of DLASWLQ
285*
286 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgelqt(m, n, mb, a, lda, t, ldt, work, info)
DGELQT
Definition dgelqt.f:137
subroutine dlaswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
DLASWLQ
Definition dlaswlq.f:170
subroutine dtplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
DTPLQT
Definition dtplqt.f:187